<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Lot No.</th>
<th>Type and Description</th>
<th>Emulsion</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>W120A</td>
<td></td>
<td>Veinlet 2½" thick 10.25</td>
<td></td>
<td>NW wall SSS 13X-CJ level</td>
</tr>
<tr>
<td>W120A</td>
<td></td>
<td>do 10" do 0.38</td>
<td></td>
<td>NW wall SSS 13X-CJ level</td>
</tr>
<tr>
<td>W130A</td>
<td></td>
<td>do 5" do 3.02</td>
<td></td>
<td>S wall SSS 13X-CJ level</td>
</tr>
<tr>
<td>W131A</td>
<td></td>
<td>do 5" do 0.51</td>
<td></td>
<td>S wall S103 3693 level</td>
</tr>
</tbody>
</table>

*Four 3 to 3½-inch veinlets

1. Name of Property: Galena mine
2. Direction to Property: West of Wallace 1.7 mi., up Lake Creek 1 mi.
3. Owner or Lessee: American Smelting and Refining
4. Address: Wallace, Idaho
5. Published References:
 - Rossman, F. L., and Calkins, F. C., 1933, Geology and ore deposits of the
 Coeur d'Alene mining district, Shoshone Co., Idaho: U.S. Geol. Survey
 Prof. Paper 62; Shannon, J. C., and McConnel, R. E., 1939, The silver belt
 of the Coeur d'Alene district, Idaho: Idaho Dep. of Mines and Geol.,
 Pamphlet No. 30.
6. Type of Examination: Reconnaissance for radioactivity.
7. Radioactive Deposit: Type and Age: Vein-Age, probably pre-Cambrian.
 - Revett quartzite of the pre-Cambrian belt series
5. Sample Description:
 - One material present: Pitchblende
 - One mineralogical association: None
 - Quartz and pyrite
8. Geologic Relationship:
 - Intimately mixed
9. Geology:
 - Strike approximately E-W. Dip 80° N. S.
 - Maximum 3 to 8 feet
 - Thin veinlets
10. Sample Radiometric Data:
 - Precision Radiation Instruments Scintillator Card, III. (Spokane)
 - Average reading per deposit 0.26 mR/hr
 - Background reading 0.02 - 0.022 mR/hr
 - Max. 20 mR/hr
11. Radiometric Data:
 - Sample W120A: Veinlet 2½" thick 10.25
 - Sample W120A: do 10" do 0.38
 - Sample W130A: do 5" do 3.02
 - Sample W131A: do 5" do 0.51

12. Unpublished References: None
13. Property of ownership executed: Yes
14. Publication report to follow: Yes
TRACE ELEMENTS PRELIMINARY RECONNAISSANCE REPORT
SUPPLEMENTARY LABORATORY DATA

DATE OF COLLECTING: August 22, 1956

REPORT BY: F. C. Armstrong and P. L. Wais

LOCATION: Idaho, Shoshone District

1. NAME OF PROPERTY:
Galena Mine

2. OWNER OR LESSEE:
American Smelting and Refining Company, and Bay Mines, Inc.

3. SAMPLES:

<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>LOT NO.</th>
<th>TYPE OF SAMPLE</th>
<th>MATERIAL</th>
<th>U COMPONENT</th>
<th>TOTAL COMPONENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-128A</td>
<td>1685</td>
<td>Channel Vainlet of</td>
<td>quartz, pyrite, and pitchblende</td>
<td>0.34</td>
<td>0.33</td>
</tr>
<tr>
<td>W-128A</td>
<td>1685</td>
<td>Channel Same vainlet</td>
<td></td>
<td>0.36, 0.46</td>
<td>0.39</td>
</tr>
<tr>
<td>W-130A</td>
<td>1685</td>
<td>Channel</td>
<td>Lots of quartz</td>
<td>10.2</td>
<td>14.0, 13.5</td>
</tr>
<tr>
<td>W-130B</td>
<td>1685</td>
<td>Channel</td>
<td>pyrite and pitchblende</td>
<td>9.1</td>
<td>11.7, 11.0</td>
</tr>
<tr>
<td>W-131A</td>
<td>1685</td>
<td>Channel</td>
<td>Vainlet of quartz, pyrite and pitchblende</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

See attached sheet 2

"THE U. S. GEOLeOICAL SURVEY MAKES NO REPRESENTATION OR WARRANTY AS TO THE ACCURACY OR COMPLETENESS OF THE INFORMATION IN THIS REPORT AND DISCLAIMS ALL RESPONSIBILITIES CONCERNING IT."

DISTRIBUTION:

1. [] HDR, RAY,推薦
2. [] HDR, RAY, RECOMMEND
3. [] HDR, RAY, RECOMMEND
4. [] HDR, RAY, RECOMMEND
5. [] HDR, RAY, RECOMMEND
6. [] HDR, RAY, RECOMMEND
7. [] HDR, RAY, RECOMMEND
8. [] HDR, RAY, RECOMMEND
9. [] HDR, RAY, RECOMMEND
10. [] HDR, RAY, RECOMMEND
11. [] HDR, RAY, RECOMMEND
12. [] HDR, RAY, RECOMMEND
13. [] HDR, RAY, RECOMMEND
14. [] HDR, RAY, RECOMMEND
15. [] HDR, RAY, RECOMMEND
16. [] HDR, RAY, RECOMMEND
17. [] HDR, RAY, RECOMMEND
18. [] HDR, RAY, RECOMMEND
19. [] HDR, RAY, RECOMMEND
20. [] HDR, RAY, RECOMMEND
21. [] HDR, RAY, RECOMMEND
22. [] HDR, RAY, RECOMMEND
23. [] HDR, RAY, RECOMMEND
24. [] HDR, RAY, RECOMMEND
25. [] HDR, RAY, RECOMMEND
26. [] HDR, RAY, RECOMMEND
27. [] HDR, RAY, RECOMMEND
28. [] HDR, RAY, RECOMMEND
29. [] HDR, RAY, RECOMMEND
30. [] HDR, RAY, RECOMMEND
31. [] HDR, RAY, RECOMMEND
32. [] HDR, RAY, RECOMMEND
33. [] HDR, RAY, RECOMMEND
34. [] HDR, RAY, RECOMMEND
35. [] HDR, RAY, RECOMMEND
36. [] HDR, RAY, RECOMMEND
37. [] HDR, RAY, RECOMMEND
38. [] HDR, RAY, RECOMMEND
39. [] HDR, RAY, RECOMMEND
40. [] HDR, RAY, RECOMMEND
41. [] HDR, RAY, RECOMMEND
42. [] HDR, RAY, RECOMMEND
43. [] HDR, RAY, RECOMMEND
44. [] HDR, RAY, RECOMMEND
45. [] HDR, RAY, RECOMMEND
46. [] HDR, RAY, RECOMMEND
47. [] HDR, RAY, RECOMMEND
48. [] HDR, RAY, RECOMMEND
49. [] HDR, RAY, RECOMMEND
50. [] HDR, RAY, RECOMMEND
51. [] HDR, RAY, RECOMMEND
52. [] HDR, RAY, RECOMMEND
53. [] HDR, RAY, RECOMMEND
54. [] HDR, RAY, RECOMMEND
55. [] HDR, RAY, RECOMMEND
56. [] HDR, RAY, RECOMMEND
57. [] HDR, RAY, RECOMMEND
58. [] HDR, RAY, RECOMMEND
59. [] HDR, RAY, RECOMMEND
60. [] HDR, RAY, RECOMMEND
61. [] HDR, RAY, RECOMMEND
62. [] HDR, RAY, RECOMMEND
63. [] HDR, RAY, RECOMMEND
64. [] HDR, RAY, RECOMMEND
65. [] HDR, RAY, RECOMMEND
66. [] HDR, RAY, RECOMMEND
67. [] HDR, RAY, RECOMMEND
68. [] HDR, RAY, RECOMMEND
69. [] HDR, RAY, RECOMMEND
70. [] HDR, RAY, RECOMMEND
71. [] HDR, RAY, RECOMMEND
72. [] HDR, RAY, RECOMMEND
73. [] HDR, RAY, RECOMMEND
74. [] HDR, RAY, RECOMMEND
75. [] HDR, RAY, RECOMMEND
76. [] HDR, RAY, RECOMMEND
77. [] HDR, RAY, RECOMMEND
78. [] HDR, RAY, RECOMMEND
79. [] HDR, RAY, RECOMMEND
80. [] HDR, RAY, RECOMMEND
81. [] HDR, RAY, RECOMMEND
82. [] HDR, RAY, RECOMMEND
83. [] HDR, RAY, RECOMMEND
84. [] HDR, RAY, RECOMMEND
85. [] HDR, RAY, RECOMMEND
86. [] HDR, RAY, RECOMMEND
87. [] HDR, RAY, RECOMMEND
88. [] HDR, RAY, RECOMMEND
89. [] HDR, RAY, RECOMMEND
90. [] HDR, RAY, RECOMMEND
91. [] HDR, RAY, RECOMMEND
92. [] HDR, RAY, RECOMMEND
93. [] HDR, RAY, RECOMMEND
94. [] HDR, RAY, RECOMMEND
95. [] HDR, RAY, RECOMMEND
96. [] HDR, RAY, RECOMMEND
97. [] HDR, RAY, RECOMMEND
98. [] HDR, RAY, RECOMMEND
99. [] HDR, RAY, RECOMMEND
100. [] HDR, RAY, RECOMMEND

D. SUPPLEMENTARY REPORT TO FOLLOW: No
In X-ray diffraction pattern for that part of sample U-123A indicated above shows uraninite and galena to be present in the highly radioactive material separated from the charmal sample.

Sample U-123A was cut 2½ inches thick and along about 6 inches of strike of a quartz-opalite-chalcedony veinlet at the west radioactive part. Sample U-123B was cut 1½ inches thick along the same veinlet along about 13 inches of strike. Samples U-123A and U-123B were cut side by side with U-123A being the more radioactive part of the two. U-123A was cut immediately adjacent to the fault shown in the map. The veinlet from thick these samples were cut is about 2½ inches thick near to the fault; it thickens along the strike and disappears about 8 feet from the fault. The veinlet adjacent to the veinlet in silicified and red this albitization extends about 6 inches into the hanging wall, and about 12 inches into the footwall of the veinlet.

Sample U-123B was cut 10 inches long across silicified and slightly red wallrock. In that 10 inches the sample cut two ½-inch and two 3/4-inch veinlets of quartz, opalite and chalcedony. The sample was cut in the downward wall near the bottom of the drift. The veinlet could be traced for only 2 to 3 feet along the strike.

Other veinlets similar to those sampled were seen in the back and north part of the exposure. These veinlets are from 1/4 inch to a knife edge thick. They are thinning near the fault. None of them exceed 3 feet in length, and most are discontinuous. Their distribution in the back and wall is not uniform.

None of these veinlets were seen in the hanging wall of the fault. Only one spot showing chalcedony radiactivity was found in the hanging wall of the fault. To be on the north wall immediately above the fault, but the cause of the chalcedony radiactivity is not apparent. The rock is not silicified or red.

The attitude of the veinlets suggests that they are filled tonalite rocks generally related to the fault. If they are filled tonalite rocks, veinlets should occur in the hanging wall of the fault. However, in the exposure in S5 137-63 the veinlets are restricted to the footwall of the fault.

A core a few feet on either side of the fault should be prospected. If the veinlets occur with regularity and in sufficient abundance there may be massive ore along the fault.

Sample U-123A was cut in the south wall of S55 65095E. At this spot quartz-opalite-chalcedony veinlets occur in red, silicified Rovato quartzite. The veinlets are about 1/4 inch thick and are irregular and discontinuous. Locally there are clefts in the veinlets that measure as much as 5 inches by 5 inches. It used with a knife that sample U-123A was cut. The core of veinlets, which is probably not over 10 inches thick, can be traced in the south wall for a critical length of about 2 feet. The core end of the core is cut off by a fault. The Company reports that since S55 65095 was being driven pieces of quartz-opalite-chalcedony veinlets were found in thin fault where it cut the Silver veins. Also cores fault onto a quartz-cleavage vein. The quartz-cleavage vein does not appear to be part of the Silver vein, but rather a branch vein that runs into the hanging wall of the Silver vein. The uranium-bearing veinlets apparently parallel the Silver vein through the quartz-cleavage vein fault into the Silver vein for 6 feet east of the fault and then branches off to the northwest. This branching of the quartz-cleavage vein forms the eastern end of the uranium-bearing veinlets. The uranium-bearing veinlets also appear to terminate up-dip against the quartz-cleavage vein. The radioactivity occurrence in S55 65095 does not warrant more exploration at this time.

The company also reports that the occurrence in S55 65095 to below the "C" band of the Galena fault and the occurrence in S55 137-63 is above the "C" band, and, therefore, that a projection cannot be made from one occurrence to the other even though they appear to line up pretty well on a map.
EXPLANATION

Fault, showing dip

Strike and dip of beds

Vein, showing dip

W-129A
Sample number and location
0.015

Milliroentgens per hour. Background in drift with "Scintillator" held in center of drift

20

Milliroentgens per hour; with "Scintillator" held against feature indicated

S4E 13 X-C N
Number of mine working place

Geologic and radiometric map showing the radioactive occurrences on the 2800-foot level of the Galena Mine, Shoshone County, Idaho