INTRODUCTION

The surficial geologic map of the Culdesac North Quadrangle, Nez Perce County, Idaho, was prepared during 1998 to 2001 by the Idaho Geological Survey's Digital Mapping Lab. Data were compiled from maps, aerial photographs, and the field work of numerous geologists. The map is a product of the Idaho Statewide Geologic Mapping Program, funded in part by the U.S. Geological Survey and Idaho. The map is a digital map of the area, with a scale of 1:24,000. The map is based on a Polyconic projection, 1927 North American Datum. The grid ticks are based on the Idaho coordinate system, west zone, 1000-foot grid ticks, and 10,000-foot grid ticks on the north boundary of the quadrangle are 1000-meter Universal Transverse Mercator grid ticks, zone 11. National geodetic vertical datum of 1929. The map is intended to provide an overview of the surficial geology of the area, as well as to provide a framework for further study.

DESCRIPTION OF MAP UNITS

SOLVENT DEPOSITS

Dyke ground (DyD): Dyke-bounded dike complex composed of magnetite, ilmenite, and other minerals. The dykes are composed of material that was extruded into the surrounding rock. The dykes are homogeneous throughout the quadrangle.

Recent (Recent): Recent deposits of fine to coarse-grained material that was deposited within the last 10,000 years. The deposits include alluvium, loess, and colluvium.

Loess and bedrock (LoB): Loess mantling basalt residuum (Quaternary and Tertiary) — Calcareous wind-blown silt. Exposures show a patterned ground of crescent-shaped lobes of colluvium, probably relicts of Pleistocene solifluction. Unit gradually merges westward into loess (Holocene and Pleistocene). Loess generally thins eastward and local deposits of thin alluvium too small in area to show at this scale. Unit may have a patterned ground of crescent-shaped lobes of colluvium, probably relicts of Pleistocene solifluction.

Debris-flows (DF): Debris-flows are poorly sorted and poorly bedded deposits of sediments that were deposited by the movement of debris. They are typically associated with landslides and can be found in areas that have been eroded by running water.

Alluvium of side streams (Holocene): Alluvium of side streams is a deposit of fine to coarse-grained material that was deposited in the lower reaches of streams. The deposits are typically composed of silt, sand, and gravel.

Made ground (Holocene): Made ground is a deposit of fine to coarse-grained material that was formed in the Holocene period. The deposits are typically composed of silt, sand, and gravel.

Regolith (Rego): Regolith is a deposit of fine to coarse-grained material that was formed in the regolith period. The deposits are typically composed of silt, sand, and gravel.

Sedimentology of slackwater deposits on the Columbia Plateau, Washington: Smith, G.A., 1993, Missoula flood dynamics and magnitudes inferred from a fine to coarse-grained map unit and another. The apparent ground width of the line representing the contact is about 80 feet at this scale (1:24,000). Contact: Line showing the approximate boundary between one map unit and another. The apparent ground width of the line representing the contact is about 80 feet at this scale (1:24,000). The line is composed of material that was extruded into the surrounding rock. The line is homogeneous throughout the quadrangle.

Flow direction of Lake Missoula Floods backwater inundation: The line is composed of material that was extruded into the surrounding rock. The line is homogeneous throughout the quadrangle.

Debris deposits: Debris deposits are deposits of sediments that were deposited by the movement of debris. They are typically associated with landslides and can be found in areas that have been eroded by running water.

Flow direction of Lake Missoula Floods: The line is composed of material that was extruded into the surrounding rock. The line is homogeneous throughout the quadrangle.

Symbols: The symbols are used to represent the various map units. The symbols are composed of material that was extruded into the surrounding rock. The symbols are homogeneous throughout the quadrangle.

References: Smith, G.A., 1993, Missoula flood dynamics and magnitudes inferred from a fine to coarse-grained map unit and another. The apparent ground width of the line representing the contact is about 80 feet at this scale (1:24,000). Contact: Line showing the approximate boundary between one map unit and another. The apparent ground width of the line representing the contact is about 80 feet at this scale (1:24,000).

Flow direction of Lake Missoula Floods backwater inundation: The line is composed of material that was extruded into the surrounding rock. The line is homogeneous throughout the quadrangle.

Debris deposits: Debris deposits are deposits of sediments that were deposited by the movement of debris. They are typically associated with landslides and can be found in areas that have been eroded by running water.

Flow direction of Lake Missoula Floods: The line is composed of material that was extruded into the surrounding rock. The line is homogeneous throughout the quadrangle.

Symbols: The symbols are used to represent the various map units. The symbols are composed of material that was extruded into the surrounding rock. The symbols are homogeneous throughout the quadrangle.

References: Smith, G.A., 1993, Missoula flood dynamics and magnitudes inferred from a fine to coarse-grained map unit and another. The apparent ground width of the line representing the contact is about 80 feet at this scale (1:24,000). Contact: Line showing the approximate boundary between one map unit and another. The apparent ground width of the line representing the contact is about 80 feet at this scale (1:24,000).

Flow direction of Lake Missoula Floods: The line is composed of material that was extruded into the surrounding rock. The line is homogeneous throughout the quadrangle.

Debris deposits: Debris deposits are deposits of sediments that were deposited by the movement of debris. They are typically associated with landslides and can be found in areas that have been eroded by running water.

Flow direction of Lake Missoula Floods: The line is composed of material that was extruded into the surrounding rock. The line is homogeneous throughout the quadrangle.

Symbols: The symbols are used to represent the various map units. The symbols are composed of material that was extruded into the surrounding rock. The symbols are homogeneous throughout the quadrangle.

References: Smith, G.A., 1993, Missoula flood dynamics and magnitudes inferred from a fine to coarse-grained map unit and another. The apparent ground width of the line representing the contact is about 80 feet at this scale (1:24,000). Contact: Line showing the approximate boundary between one map unit and another. The apparent ground width of the line representing the contact is about 80 feet at this scale (1:24,000).