Geologic Map of the Taylor Mountain Quadrangle, Lemhi County, Idaho

David J. Stewart, Arline S. Canawa, Russell L. Burmester, and Rod S. Lewis

2011

Introduction

This geologic map of the Taylor Mountain Quadrangle was created to depict the pre-Mesozoic bedrock geology around Salmon, Idaho. The map illustrates the distribution of various rock units and structures, providing a comprehensive view of the geologic features in the area.

Correlation of Map Units

The map uses a color-coded system to represent different rock units and formations. Each color corresponds to specific geological characteristics, such as age, type, and composition, allowing for easy identification of various rock types.

Location of Field Observations

The locations of field observations are marked on the map to indicate where specific geological features were mapped. These observations provide valuable data that helped in the creation of the map.

REFERENCES

Magnetic susceptibility of 9 hand samples averaged 0.15, with the highest, 0.20 measured at 50 exposures reflects abundant magnetite content, a joint property that will hold true with larger units of the map. (Hunt and others, 1995).

Mud cracks, and possible water-escape structures. Includes at least one fault, the South Fork Iron Creek fault, where concealed. (1988, p. 13, pl. 2) labeled this structure a reverse fault and determined that the quadrangle. All were metamorphosed to biotite grade but vary in grain size from fine to coarse, which is determined based on the amount of biotite in the rock.

Landslide deposits (Holocene to Pleistocene)

These deposits are composed of moderately sorted and stratified pebble to boulder sandy gravel. They are often found in areas where landslides have occurred, providing evidence of past geological activity.

Structure

The map includes a section on structure, which details the strike and dip of bedding in the area. This information is crucial for understanding the orientation and orientation of geological layers, which can help in predicting natural hazards such as landslides.

ACKNOWLEDGMENTS

Acorn Geography that will hold true with larger units of the map.