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CORRELATION OF MAP UNITS
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SYMBOLS
Contact: dashed where approximately located.

Normal fault: ball and bar on downthrown side; dashed where 
approximately located; dotted where concealed.

Lateral faults; arrows indicate direction of motion;  dashed where 
approximately located; dotted where concealed.

Antiform; dashed where approximately located; dotted where 
concealed.

Strike and dip of bedding.

Strike and dip of vertical bedding.

Strike and dip of eutaxitic foliation.

Strike and dip of vertical eutaxitic foliation.

Strike and dip of overturned eutaxitic foliation.

Strike and dip of joint.

Boundary of Teton Reservoir on June 5, 1976, elevation 5,301.7 ft.

Paleomagnetic and chemistry sample location ( Tables 1 and 2).
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INTRODUCTION

The Linderman Dam quadrangle lies within a low basin between the Big 
Bend Ridge caldera of the Yellowstone Plateau volcanic field (Christiansen, 
2001) and the Big Hole Mountains portion of the Rocky Mountain Thrust 
Belt (Staatz and Albee, 1966; Price and Rogers, 2010). At 2.06 Ma, the 
Huckleberry Ridge Tuff was erupted from the Big Bend Ridge caldera. The 
out-flow facies of the tuff swept over Tertiary sediments, basalts, and 
rhyolitic rocks, and ponded to a depth of about 130 m (425 ft). Immediately 
following emplacement, the tuff and underlying water-saturated deposits 
were deformed into large-scale antiform load structures, faults, and a 
“tectonically” denuded valley (Embree and Hoggan, 1999; Geissman and 
others, 2010). Best exposures of antiforms are in the Teton River canyon at 
the boundary of this quadrangle and the adjacent Newdale quadrangle to 
the west (Figure 1; secs. 16, 20, 21, T. 7 N., R. 42 E.) The valley, called Hog 
Hollow, extends east-west across the middle of the map and into the 
adjacent Newdale quadrangle (Embree, Phillips, and Welhan, 2011). The 
valley have resulted from the formation of a diapiric load structure and 
associated lateral spreading. Lateral faults produced by this deformation are 
shallow structures confined to Qyh and upper portions of Ts and Tb. Early 
to middle Pleistocene basalt flows erupted from vents  south and east of this 
quadrangle and cap the Huckleberry Ridge Tuff (Protska and Embree, 
1978). Incision by the Teton River formed the Teton River canyon and its 
tributaries in which most exposures of bedrock units occur. During the Bull 
Lake glaciation of the middle Pleistocene, the northeastern edge of the  area 
was the margin of the Yellowstone Plateau-Teton Range ice sheet (Scott, 
1982). Till, outwash, and probably loess were deposited at this time. During 
the Pinedale glaciation of the late Pleistocene, glaciers did not reach the 
area. However, a thick mantle of loess derived from outwash of Pinedale 
glaciers was deposited.  The loess is the parent material for the rich soils of 
the region. On June 5, 1976, the Teton Dam in the adjacent Newdale quad-
rangle failed (Seed and Duncan, 1987). At the time of failure, the reservoir 
from the dam was at an elevation of ~5,300 ft in Teton canyon. The sudden 
removal of the reservoir caused dozens of small landslides within the 
canyon (Figure 1; Schuster and Embree, 1980).

SOURCES OF MAP INFORMATION

Geologic maps by Prostka and Hackman (1974), Raymond and Hansley 
(1975), Prostka and Embree (1978), and Christiansen (1983, 2001) were 
compiled and consulted for this study. Additional field work was 
conducted in 2010. Logs of water wells (Idaho Department of Water 
Resources, 2010) and drill holes (U.S. Bureau of Reclamation unpublished 
report) provided information about thickness and extent of units. Paleo-
magnetic and geochemical studies (Tables 1 and 2) were used to help 
correlate basalt exposures.

DESCRIPTION OF MAP UNITS

ALLUVIAL AND LACUSTRINE DEPOSITS

Alluvium of the Teton River and tributary streams (Holocene)—Unconsolidated 
clayey silt, silty sand, and gravel.  Generally less than 3 m (10 ft) thick.

Tuffaceous lacustrine and alluvial sediments, and interbedded volcanic rocks 
(Pliocene?)—Light gray and yellow, weakly cemented, strongly deformed, 
tuffaceous and arkosic sandstone, siltstone, and conglomerate. Locally 
interbedded with brown and yellowish-brown palagonite tuff, white 
diatomite, basalt, and rhyolite.  Basalt is mapped as unit Tb where possible. 
Shown as Qel/Ts where overlain by loess. Best exposed in Hog Hollow (NE 
1/4 sec. 14, T. 7 N., R. 42 E.) where complexly faulted palagonite tuff, 
gravel, silt, rhyolite glass shards, pumice, glassy scoria, and rhyolite underlie 
steeply dipping Huckleberry Ridge Tuff (Embree and Hoggan, 1999, p. 201). 
Disrupted rhyolite flow fragments in this exposure are as much as tens of 
meters long, are vitrophyric to devitrified, massive to perlitic and locally 
autoclastic, with 20-25 percent subhedral to anhedral, 1-5 mm phenocrysts 
of sanidine and quartz. Deformation of Ts was created during emplacement 
of Qyh (Embree and Hoggan, 1999; Geissman and others, 2010).  In the 
Teton River canyon (SE 1/4 sec. 16, T. 7 N., R. 42 E.), unit consists of 
well-rounded cobbles of quartzite and granitic rocks, and weakly cemented 
sandstone.  The unit is present within and south of Hog Hollow (Embree and 
others, 2011; Phillips, 2010) but likely was not deposited north of this 
because of a pre-Qyh rhyolite flow or dome.  Metamorphic and granitic 
cobbles, arkosic sands, and local diatomite beds suggest deposition in 
fluvial and lacustrine environments (Christiansen, 1982, p. 353), probably of 
the ancestral Teton River. Undated. Interbedding of basalt (Tb) with a similar 
stratigraphic position to the ~3.6 Ma basalt of Rexburg (Embree and others, 
in preparation) suggests a Pliocene age for Ts. 

MASS WASTING DEPOSITS

Landslide deposits (early Pleistocene and Holocene)—There are two sets of 
landslides: large early Pleistocene features in and around Hog Hollow; and 
small Holocene (historic) features in Teton canyon.  The Hog Hollow 
landslides consist of hummocky masses of disrupted blocks of Qyh and Ts 
that have moved northward from head scarps on the south flank of the Hog 
Hollow valley (e.g. sec. 14, T. 7 N., R. 42 E.) or eastward from head scarps 
at the northeast end of the valley flank (e.g. sec. 7, T. 7 N., R. 43 E.). They 
are inferred to have formed during or soon after emplacement of Qyh and 
the formation of Hog Hollow. Poorly exposed because of thick loess cover.  

In Teton canyon, landslides are the result of rapid drawdown of the Teton 
Reservoir after the failure of Teton Dam on June 7, 1976 (Schuster and 
Embree, 1980; Figure 1). The majority of these landslides are translational 
earth slides with failure surfaces near contact between overburden (loess, 
colluvium, and/or slope wash) and underlying Qyh. Thickness from 0.3-0.6 
m (1-2 ft) to ~3 m (~10 ft). Where overburden was >3m (>10 ft), landslides 
began as shallow rotational slumps 6-7.5 m (20-25 ft) thick, then evolved 
into earth flows and debris flows. Some flows reached out into the river and 
caused temporary damming or changed stream configurations. Rock falls 
and slides involving tuff bedrock also occurred. Landslides of all types are 
more numerous on south side of Teton River because of greater thickness 
of unconsolidated material from preferential deposition of loess. Most 
slides occurred at or below the maximum reservoir elevation of 5,301.7 ft. 
Slides were mapped using air photos taken in June 1976; many of the slides 
remain visible on images taken in 2004.

GLACIAL DEPOSITS

Older glacial deposits, undivided (middle Pleistocene)—Till and outwash 
covered by loess. Till consists of pebble to boulder gravel in loose to 
compact matrix of silty sand to clayey sandy silt; nonsorted to poorly 
sorted; clasts angular to subround; nonbedded to crudely bedded. Outwash 
consists of pebble to cobble gravel, locally bouldery, with sand matrix; 
poor to moderate sorting, clasts subangular to round; bedding is parallel 
and large-scale cross-bedded; beds are thin to thick (Scott, 1982). Thick-
ness ranges from 1 m (3 ft) to more than 30 m (100 ft).  Forms sheet-like 
deposits with gentle rolling relief (Scott, 1982; Richmond and Hensley, 
1975). Poorly exposed in the map area because of thick loess cover. Best 
exposed  in SE 1/4 sec. 30, T. 8 N., R. 43 E. Originally divided by Richmond 
and Hensley (1975) and Scott (1982) into till and outwash units but 
exposures in map do not permit this. Undated in the map. Unit can be 
traced northeast toward the Yellowstone Plateau where it underlies depos-
its of the last glacial period (Pinedale glaciation). Units with similar 
stratigraphic position in West Yellowstone and Jackson Hole have dates of 
about 136-157 ka (Pierce and others, 1976; Licciardi and Pierce, 2008). 
Based on these dates, the unit probably formed during the Bull Lake glacia-
tion between 140-150 ka.

EOLIAN DEPOSITS

Loess (late Pleistocene–middle Pleistocene)—Massive, light gray to light 
brownish gray silt, clay, and very fine sand; locally crudely bedded by 
slope processes.  In the map area, thickness in well logs ranges from  <1.5 
to 13 m (<5 to 44  ft).  Typically forms drifts downwind from hills, creating 
linear geomorphic patterns. Deposits are significantly thicker on north and 
east facing canyon walls due to prevailing southwest winds. Derived from 
deflation of outwash deposits during glaciations of the Yellowstone Plateau 
and Teton Range (Scott, 1982). Several depositional units separated by 
buried soils are present in correlative deposits in the upper eastern Snake 
River Plain (Pierce and others, 1982; Scott, 1982; McDole, 1969; Lewis 
and Fosberg, 1982), but have not been documented in the map. Not dated 
in the map; regional ages range between 15-25 ka, 35 ka, 46 ka, ~68 to 79 
ka, and ~130 to 140 ka (Phillips and others, 2009; Pierce and others, 2003, 
p. 333; Forman and others, 1993).

VOLCANIC ROCKS

Basalt of Ard Farms (early Pleistocene?)—Dark gray aphanitic to fine-grained 
basalt with rare plagioclase phenocrysts <2 mm and normal magnetic 
polarity (Table 1). Shown as Qel/Qba where covered by loess, and 
Qgou/Qba where covered by glacial deposits and loess. Erupted from 
north-trending, loess-covered ridge in the adjacent Drummond quadrangle 
with a 6,220 ft high-point centered at lat 43.890 N, long -111.230 W.  From 
the vent, flows spread north and west down the north flank of the Big Hole 
Mountains and along the Teton River and Falls River drainages. Undated. 
Subdued vent morphology, degree of stream incision, and thick loess cover 
away from canyon edges suggests eruption during a normal subchron of the 
Matuyama chron (perhaps subchron C2n (Olduvai) at 1.79-1.95 Ma; polar-
ity timescale from Ogg, 1995), rather than during the Brunhes chron after 
0.78 ka.

Unit B, Huckleberry Ridge Tuff (early Pleistocene)—Compound cooling unit 
of crystal-rich welded rhyolitic ash-flow tuff.  Shown as Qel/Qyh where 
overlain by loess, and Qgou/Qyh where overlain by glacial deposits and 
loess.  In lower part of unit, contains 20-30 percent phenocrysts of sanidine 
and quartz, and sparse plagioclase and pyroxene.  Phenocrysts are less 
numerous (5 percent) near top of unit. Also contains welded pumice 
inclusions (fiamme).  Black basal vitrophyres are exposed locally in the 
cores of antiforms in the Teton River canyon.  Major part of unit composed 
of light gray to grayish-pink densely welded devitrified tuff with 
well-developed eutaxitic texture. Thickness is 193 m (634 ft) in drill holes 
DH11 and DH19. Other well logs and exposures indicate that thickness 
varies greatly in the map, from about 37-130 m (122-425 ft). This probably 
reflects rheomorphic deformation (Embree and Hoggan, 1999; Geissman  
and others, 2010). Total-fusion and incremental-heating ages of sanidine 
from Qyh are 2.059 ± 0.004 Ma (Lanphere and others, 2002). The tuff 
cooled in a weak transitional geomagnetic field with subhorizontal inclina-
tion and southwest declination (Reynolds, 1977). Paleomagnetic studies 
show that internal deformation, including formation of >120 m amplitude 
antiforms, occurred while the unit was above the maximum blocking 
temperature of magnetite (~580° C) (Geissman and others, 2010). Corre-
lated with Unit B of the Huckleberry Ridge Tuff erupted from the Henrys 
Fork Caldera of the Yellowstone Plateau in the vicinity of Island Park, Idaho 
(Christiansen, 2001).

Vitrophyres of Unit B, Huckleberry Ridge Tuff (early Pleistocene)—Dense 
black welded tuff with phenocrysts of sanidine and quartz set in a glassy 
groundmass. Consists of basal vitrophyre about 10-15 m (33-49 ft) thick 
exposed in antiforms in the Teton River canyon.  Also exposed as “lateral 
vitrophyre” ~1-10 m (3-33 ft) thick along flanks of Hog Hollow in S 1/2 sec. 
12, T. 7 N., R. 42 E. (Embree and Hoggan, 1999). 

Basalt (Pliocene?)—Dark gray columnar-jointed lava flows of massive and 
diktytaxitic basalt containing phenocrysts of plagioclase and olivine.  
Maximum exposed thickness in the core of anticlines along the Teton 
River is 79 m (260 ft). In drill holes DH11 and DH19, unit occurs near the 
top of unit Ts and is as much as 59 m (194 ft) thick. Undated.  May be 
broadly correlative with the ~3.6 Ma basalt of Rexburg (Embree and 
others, in preparation).
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Table 2. Major oxide and trace element chemistry of basalt of Ard Farms collected in the Linderman Dam quadrangle.

* Total Fe expressed as FeO.
Geographic coordinates in North American Datum of 1927.
All analyses by XRF performed at BYU-Provo by Dan Moore, BYU-Idaho.
Sample is at same location as paleomagnetic sample 3739B (Table 1).

Major elements in weight percent (unormalized) Trace elements in  parts per million
Sample
number Latitude Longitude Unit name

Map 
unit SiO2 TiO2 Al2O3 P2O5FeO* MnO MgO CaO NiLOl Cr Sc V Ba Rb Sr Zr Y Nb Ga Cu Zn Pb La Ce Sm NdNa2O K2O

3739 43.99 -111.461 basalt of Ard Farms Qba 45.75 2.51 16.04 14.43 0.24 6.52 9.86 1.89 0.37 0.39 -0.20  95  81 26 319 510 1 273 198 40 21 22 81 132 10 22 46 5 27

Table 1. Paleomagnetic data for the basalt of Ard Farms collected in the
Linderman Dam quadrangle.

n = number of oriented cores.
D = site mean declination of characteristic remnant magnetism.
I = site mean inclination of characteristic remnant magnetism.
�95 = confidence limit for the mean direction at the 95% level.
� = precision parameter.
Analysis by D. Champion, Volcanic Hazards Team, U.S. Geological Survey.

Sample
number Latitude Longitude

Unit
name n D I �95 � PolarityR

3739 Qba 43.99 -111.461 7/8 344.7 64.1 1.8 1162 6.9948 N

Figure 1.  Landslides in the Linderman Dam quadrangle created by the rapid drawdown of the Teton Reservoir (after Schuster and 
Embree, 1980). 


