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CORRELATION OF MAP UNITS
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1Sanidine 40Ar/39Ar laser fusion age, Ellis and others, 2012; Rivera and others, 2014.
2Groundmass concentrate 40Ar/39Ar plateau age, written communication, M. Kuntz, 2006.
3Sanidine, vitrophyre, or plagioclase 40Ar/39Ar age, Morgan and McIntosh, 2005. 
4Range of single aliquot quartz OSL ages, Phillips and others, 2009.
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SYMBOLS

Contact: dashed where approximately located.

Normal fault: ball and bar on downthrown side; dashed where 
approximately located; dotted where concealed.

Water well and Well ID number.

Geothermal test well.

Pit crater depression.

Boundary of area inundated by Teton Dam Flood of June 5, 1976. 

INTRODUCTION

This map depicts rock units exposed at the surface or underlying a thin 
cover of soil or colluvium. Surficial geological units are also depicted 
where mappable at a scale of 1:24,000. 

Bedrock geology is modified from Prostka and Embree (1978) with 
additional field work performed in 2008. Additional sources of map 
information that were compiled and consulted include Stearns and others 
(1938), Crosthwaite (1964), Prostka and Hackman (1974), and Mitchell and 
Bennett (1979). Exposures of geological units are limited in the Rexburg 
quadrangle because of widespread loess and alluvial deposits. Logs from 
the Sugar City and Madison County geothermal test wells (Embree and 
others, 1978; Kunze and Marlor, 1982) and numerous water wells (Idaho 
Department of Water Resources, 2015) provide important information on 
the subsurface extent and character of poorly exposed units. Most water 
wells are not precisely located and lack detailed lithologic logs. This limits 
the precision of cross sections and mapping inferred from the logs. The 
location of important wells are indicated on the map. Logs for these wells 
can be found at http://www.idwr.idaho.gov/apps/appswell/RelatedDocs. 
asp?WellID=xxxxxx where “xxxxxx” is the six-digit Well ID number.

Surficial units are defined in part with data compiled from Scott (1982, 
1977), Gillerman and Weppner, (2014), and Soil Survey Staff, (2015). 
Contacts between surficial units were mapped on the basis of landscape 
position and cross-cutting relationships as identified on digital ortho- 
rectified 0.5 m (1.6 ft) color aerial photos flown in 2013 (Inside Idaho, 
2015), and on hillshades and slope maps created from a 10 m (33 ft) digital 
elevation model (Gesch and others, 2002).  A 3 m (10 ft)  hillshade derived 
from a 2009 LiDAR flight of Madison County (Idaho LiDAR Consortium, 
2009) was used in the South Fork Teton River area.

STRATIGRAPHY

Miocene to Pliocene rhyolitic rocks (about 6.6 to 4.4 Ma) correlated with 
the Heise volcanic field (HVF) are present in the subsurface of the map. The 
HVF is the second youngest of eruptive centers along the Snake River 
Plain-Yellowstone hotspot trend.  Basaltic volcanism began at about 3.6 Ma 
with eruption of lavas from a shield volcano on the Rexburg bench (unit 
Tbr; Fig. 1). At about 2.1 Ma, the Huckleberry Ridge Tuff (unit Qyh) erupted 
from the Yellowstone volcanic field, depositing as much as 25 m (83 ft) of 
welded tuff in the quadrangle. Basaltic volcanism continued in the early 
Pleistocene with eruptions from volcanic rift zones located east of the map 
(Fig. 1). These basalts (units Qbm and Qbs) reached the map area as 
intercanyon flows and were later buried by alluvial deposits. Basalt flows 
from vents on the Snake River Plain to the west or north of the map area 
may also be present beneath alluvial deposits. Gravelly braided-stream 
deposits (units Qgh and Qgsr) were deposited on the Snake River Plain 
during glaciations of the Yellowstone Plateau and Teton Range. Only depos-
its from the latest glaciation (Pinedale, circa 14-26 ka) have been docu-
mented in the map although older deposits are probably present in the 
subsurface. Eolian deposition accompanied glaciations, blanketing uplands 
with as much as 8 m (24 ft) of loess (unit Qel). During the Holocene, floods 
deposited and incised alluvial sediments (units Qth, Qasf, Qaht, and Qas). 

STRUCTURE

The map area lies on the eastern margin of the Snake River Plain near the 
termination of the Grand Valley normal fault  (Fig. 1; Anders and others, 
1989; Piety and others, 1992). As this major fault approaches the Snake 
River Plain, it divides into NE-stepping splays that become increasingly N-S 
oriented (Prostka and Hackman, 1974; Prostka and Embree, 1978). On the 
Rexburg bench, an array of short, low-offset, near-vertical faults that trend 
approximately 350° azimuth are present. Pit craters on the Rexburg shield 
volcano are aligned along several of these faults. The array of faults and pit 
craters are consistent with basalt dike injection at relatively shallow depths 
facilitated by extension along the Grand Valley fault zone (cf. Dauteuil and 
others, 2001; Kuntz and others, 2002). The Rexburg fault is an arcuate 
normal structure along the boundary between the Snake River Plain and the 
Rexburg bench. A 15 to 30 m (50 to 100 ft) scarp in unit Tbr is present along 
much of its trace. The Huckleberry Ridge Tuff is offset as much as 100 m 
(328 ft) across the structure. Well logs and exposures in the adjacent Ririe 
quadrangle (Phillips and others, 2014) and in sec. 21, T. 6 N., R. 40 E. of the 
map show that multiple, short, parallel faults with offsets down to the Snake 
River Plain are present along portions of the structure. A fault about 2.8 km 
south of Rexburg with a strike of 355° azimuth and dip of 85°W was 
trenched and found to cut post-Huckleberry Ridge Tuff sediments with 
about 1.5 m of normal offset. Younger Holocene or late Pleistocene alluvial 
deposits were not offset (Williams and Embree, 1980a,b).

GEOLOGIC HAZARDS

On June 5, 1976, the Teton Dam failed catastrophically, killing 14 people 
and causing $400 million to $1 billion (1976 dollars) in flood damage (Seed 
and Duncan, 1987). Over half of the map area was flooded including Sugar 
City and substantial parts of Rexburg (Harenberg and Bigelow, 1976; Scott, 
1977). Riverine flood hazards are high along portions of the South Fork of 
the Teton River and Henrys Fork (FEMA, 1991). The city of Rexburg has also 
experienced damaging flash flooding during summer thunderstorms. 

Faults with late Quaternary (less than 130 ka) movement are present within 
50 km (30 mi) of the map area (Haller and Lewis, 2010). They include the 
Rexburg, Heise, and Grand Valley structures. Earthquakes on these faults 
could cause strong shaking in the map area. Seismic shaking may be ampli-
fied in areas of the map underlain by thick alluvial sediments. Liquefaction 
may occur where saturated and cohesionless sediments are present 
(Phillips and others, 2010). 

ENERGY AND MINERAL RESOURCES

Several deep irrigation wells on the Rexburg bench have produced warm 
water (about 20°C to 26°C; Dansart and others, 1994). Exploration for 
geothermal energy was conducted in the area in the late 1970s and early 
1980s (Prostka and Embree, 1978; Embree and others, 1979; Kunze and 
Marlor, 1982).

Sand and gravel are mined in several pits in the quadrangle from units Qgh 
and Qgsr (Gillerman and Weppner, 2014). Crushed rock has been mined 
from unit Tbr in SW¼ sec. 18, T. 5 N., R. 40 E.

DESCRIPTION OF MAP UNITS

SEDIMENTARY DEPOSITS

Man-made land (Holocene)—Engineered fill along US Highway 20.

Alluvium of side streams (Holocene)—Gravel, sand, silt and clay contained in 
relic channels of the Snake River and South Fork Teton River. Thickness less 
than 9 m (30 ft). Subject to flooding and high water tables during spring and 
early summer.

Alluvium of the Henrys Fork and South Fork Teton River (Holocene)—Gravel, 
sand, silt and clay of active floodplains of the Henrys Fork and South Fork 
Teton River. Deposited in numerous meandering channels, oxbows, and 
point bars. Thickness is generally less than 9 m (30 ft). Subject to seasonal 
flooding and standing water. 

Fill-cut terrace alluvium of the Henrys Fork and South Fork Teton River 
(Holocene-late Pleistocene)—Sand, clay, and gravel in terraces separated 
by 1.5-3 m (5-10 ft) scarps from the floodplain and active channels of the 
Henrys Fork and South Fork Teton River. Terrace riser height generally 
increases to the north along the Henrys Fork. Poorly drained, with the water 
table fluctuating to within 0.6 to 1.2 m (2 to 4 ft) of the surface during wet 
seasons (Soil Survey Staff, 2015). Thickness is uncertain because of poor 
exposures and because terrace deposits cannot be reliably separated from 
older units in well logs. Approximate thickness is 0.9 to greater than1.5 m 
(3 to greater than 5 ft).

Gravelly outwash of the Henrys Fork and South Fork Teton River (late 
Pleistocene)—Massive to thickly bedded, well-rounded cobble to pebble 
gravel, with an open-framework filled by subangular sand. Gravel clasts 
consist of rhyolite, basalt, quartzite, gneiss, and obsidian (Gillerman and 
Weppner, 2014, site Ma-22c). Beds of thinly cross-bedded, coarse to 
medium, sub-angular sand commonly separate gravels.  Sand is composed 
of obsidian, quartz and feldspar derived from rhyolite phenocrysts, musco-
vite, and fragments of basalt, rhyolite, and quartzite. Sand beds are locally 
black because of high obsidian content. Thickness of gravels above basalt 
in water well logs is 20 to 63 m (60 to 190 ft). Most of unit is a braided- 
stream deposit formed during the Pinedale glaciation (circa 13 to 26 ka; 
Licciardi and Pierce, 2008) of the Yellowstone Plateau and Teton Range 
(Scott, 1982). Clays and sands about 3 to 23 m (10 to 75 ft) in thickness are 
present at the base of the gravel section in many water well logs; these may 
represent pre-Pinedale deposits (see unit Qc). Contact with Qgsr is identi-
fied by change of regional slope of land surface from NE-SW to SE-NW. 
Unit is an aggregate resource and unconfined aquifer for domestic and 
municipal water supplies.

Gravelly outwash of South Fork Snake River (late Pleistocene)—Massive to 
thickly bedded, planar, well-rounded cobble to pebble gravel, with an 
open-framework filled by subangular sand. Beds of cross-bedded coarse to 
medium sand locally present. Gravel clasts are dominated by pink, white, 
or gray quartzite with lesser limestone, dolomite, rhyolite, basalt, 
sandstone, siltstone, and granite (Gillerman and Weppner, 2014, site 
Ma-68c). The near-absence of obsidian sands and abundant quartzite 
cobbles is diagnostic of this unit. Water well logs indicate minimum 
thickness of about 50 m (164 ft); maximum thickness uncertain because 
wells do not generally penetrate basal contact with deeper lithologies. Unit 
is a braided-stream deposit formed during the Pinedale glaciation of the 
Teton range (Scott, 1982). Correlative deposits in Idaho Falls area are dated 
by optically stimulated luminescence between about 13 and 26 ka (Phillips 
and others, 2009), consistent with cosmogenic surface exposure ages of 
moraines in the Teton range (Licciardi and Pierce, 2008). Unit is an aggre-
gate source and unconfined aquifer for domestic water supplies.

Alluvial fans (Holocene-late Pleistocene)—Brown to light-gray silt, clay, and 
very fine sand (reworked loess); crudely bedded; about 3 to over 4.6 m (10 
to over 15 ft) thick.

Gravel and sand, undivided (Holocene-Pleistocene)—Used in cross sections 
where water well logs lack sufficient detail to subdivide or correlate 
Quaternary deposits. Gravel and sand with lesser silt and clay; includes 
units Qgsr, Qgh, Qth, Qaht, and Qas. Thickness ranges from less than 16 m 
(50 ft) to greater than 69 m (210 ft) and generally increases from east to west 
across the quadrangle.

Fine-grained sediments (middle-early Pleistocene)—Not exposed in the map 
area; used in cross sections. Clay and sand encountered in water well logs 
above Qb and below gravels and sands of Qs. Thickness ranges from about 
3 to 23 m (10 to 75 ft). These deposits may have formed in shallow lakes 
created by drainage disruption following eruption of basaltic lavas (unit 
Qb).

EOLIAN DEPOSITS

Loess (late-middle Pleistocene)—Massive, light-gray to light brownish gray silt, 
clay, and very fine sand. Thickness is 2 m to 8 m (6 to 24 ft) and is greatest 
on the Rexburg bench. Carbonate content is 15-20% throughout loess 
deposits except in leached upper horizons or in horizons of soil carbonate 
accumulation. The Rexburg and Ririe soil series on the Rexburg bench 
contain pedigenic carbonate horizons generally corresponding to carbon-
ate morphology stages II to III.  In secs. 29 and 32, T.6 N., R.40 E., unit Tbr 
is capped with up to 1 m (3 ft) of carbonate-silica duripan developed in 
loess. Units Qgsr and Qgh are locally capped with loess (not mapped) 
about 50 to 127 cm (20 to 50 in) thick and have stage I+ to II carbonate 
morphology stages. Loess was derived from deflation of fine-grained 
sediment on outwash plains by NE-directed winds during glaciations of the 
Snake River headwaters. Regionally, loess in the Eastern Snake River Plain 
consists of several depositional units separated by buried soils (Pierce and 
others, 1982; Scott, 1982). Periods of loess deposition range between 15 to 
about 154 ka (Phillips and others, 2009; Pierce and others, 2011). Loess is 
parent material for the fertile soils on the Rexburg bench.

VOLCANIC ROCKS

Basalts

Basalt, undivided (middle-early Pleistocene)—Basalt flows locally interbedded 
with gravel and sand. Not exposed in the quadrangle. Used in cross 
sections based upon exposures in nearby areas or from water and geother-
mal test wells. Basalts of several ages and sources are placed into this unit 
because well logs do not permit reliable subsurface correlations. All of the 
basalts included in Qb are stratigraphically above unit Qyh. The Sugar City 
and Madison County geothermal test wells intersected two basalt intervals 
above Qyh (Fig. 2; Embree and others, 1978; Kunze and Marlor, 1982; Jean 
and Shervais, 2010; M. Jean, written communication, 2014). The upper 
sequence consists of medium-gray to black, aphanitic to microphyric, 
locally diktytaxitic, vesicular basalt, about 34 m (112 ft) thick. At least 3 
flows with normal magnetic polarity are present, separated by thin beds of 
pebbly arkosic sand, tuffaceous sand, gravel, silty clay and sand. Vent 
locations for the upper sequence are unknown. Possibilities include vents 
on the Snake River Plain north or northwest of the map area. The lower 
basalt sequence is correlated with unit Qbm (see description below). 

Basalt of Moody Creek (middle?-early Pleistocene)—Used in Fig. 2 only; 
cannot be reliably correlated in subsurface with available well data. 
Medium-gray, fine-grained, locally diktytaxitic basalt with sparse plagio-
clase phenocrysts as much as 5 cm in length and 7 to 10 percent 
fine-grained olivine. Consists of the lower basalt sequence above Qyh in 
the Sugar City geothermal test well (Fig. 2). Not exposed in map area; corre-
lated with basalt of Moody Creek on basis of geochemistry and paleomag-
netic inclination. Unit named from exposures in the Moody and White Owl 
Butte quadrangles east of the map; also well-exposed in the Teton River 
canyon in the Newdale quadrangle (Embree and others, 2011). Vent is at lat 
43.7989°N., long 111.5594°W. In the Sugar City geothermal test well, 
consists of three flows with total thickness of about 26 m (80 ft). The basalt 
of Moody Creek has reverse paleomagnetic polarity with an inclination of 
about -70° (Table 1), and relatively elevated incompatible and large ion 
lithophile elements (e.g. Ti, Zr, Nb, Ba; Table 3). The reverse magnetic polar-
ity suggests that unit age is between 781 ka and about 2.1 Ma (age of Qyh). 
However, 40Ar/39Ar dating yielded an age of 440 ± 50 ka for a sample from 
the Newdale quadrangle (B. Turrin, written communication, 2012). This age 
may not be reliable because the global geomagnetic polarity timescale 
shows no reverse periods at that time (Cohen and Gibbard, 2011). 

Basalt of Sommers Butte volcanic rift (early Pleistocene)—Dark greenish-gray 
basalt, dense to vesicular, with locally abundant plagioclase phenocrysts 
1-2 mm and abundant reddish-brown olivine 0.25 to 0.5 mm. Not exposed 
in map area; used only in cross section B-B’. Erupted from vents along the 
22 km (13 mi) Sommers Butte-Lyons Creek volcanic rift in the Heise and 
Moody quadrangles (Phillips and others, 2016; Embree and others, 2016). 
Unit flowed into the South Fork of the Snake River where it interacted with 
wet sediments. Water well logs suggest that the unit reached Thornton in 
the SW portion of the map where it is as much as 18 m (60 ft) thick. 
Contains elevated incompatible and large ion lithophile elements similar to 
unit Qbm (Phillips and others, 2016). Reverse paleomagnetic polarity with 
very steep inclination of about 86°. Correlative basalts in the Moody 
quadrangle are dated by whole rock 40Ar/39Ar analyses at about 2.0 Ma (M. 
Kuntz, written communication, 2006). 

Basalt of Rexburg (Pliocene)—Dark-gray columnar-jointed flows of dense to 
vesicular and diktytaxitic basalt containing sparse phenocrysts of plagio-
clase and olivine. Generally interbedded with cinders and scoria in well 
logs. Shown as Qel/Tbr where covered by loess. Erupted from a shield 
volcano that comprises most of the Rexburg bench in the map area. 
Depressions on the flanks of the shield are interpreted as pit craters. The 
craters are flat-bottomed, less than 9 m (30 ft) deep, and located adjacent 
to, and elongated parallel to, normal faults trending approximately 355°. 
Best exposures of the unit are along the Rexburg fault scarp in the map and 
adjacent Ririe quadrangle (Phillips and others, 2014). Maximum exposed 
thickness in the map is about 50 m (165 ft); thickness is 32 m (104 ft) in the 
Sugar City geothermal test well (Fig. 2). On the Rexburg bench, water wells 
show about 122 m (400 ft) of interbedded lava flows and cinders. Dated by 
40Ar/39Ar at 3.29 ± 0.02 Ma with a sample from the Ririe quadrangle (B. 
Turrin, written communication, 2012; Phillips and others, 2014), and at 
about 3.6 Ma from an excavation on the BYU-Idaho campus in the city of 
Rexburg (M. Kuntz, written communication, Table 1). Reverse paleomag-
netic polarity of about -60° (Table 2). Unit lacks the elevated incompatible 
and large ion lithophile element concentrations of units Qbm or Qbl (Table 
3). Unit is important deep aquifer for irrigation wells on the Rexburg bench. 

Rhyolites

Huckleberry Ridge Tuff of the Yellowstone volcanic field (early Pleistocene)— 
Rhyolitic ignimbrite, densely to moderately welded, with moderately abun-
dant (about 10 percent), small (1 to 4 mm) phenocrysts of sanidine and 
quartz with lesser plagioclase and pyroxene. Shown as Qel/Qyh where 
covered by loess. Phenocrysts tend to be concentrated (20 to 30 percent) in 
lower portion of unit and sparse (<5 percent) higher up in the unit. Most 
exposures in map area consist of platy ledges of light-gray to grayish-pink, 
densely welded, devitrified tuff with eutaxitic to lithophysal fabric. Litho-
phasae about 0.5 cm in diameter comprise about 70% of rock. Three Huck-
leberry Ridge Tuff members (A, B, and C) were erupted from the Big Bend 
Ridge caldera segment in the Yellowstone volcanic field about 48 km (30 
mi) north of the map (Christiansen, 2001). Known exposures in map area 
are probably Member A (C. Wilson, written communication, 2015). Water 
wells on the Rexburg bench show thickness ranges from about 6 to 25 m 
(21 to 83 ft). Thickness in the Sugar City geothermal test well (Fig. 2) is 
about 11.5 m (35 ft). Magnetic polarity is excursional with subhorizontal 
inclination and southwesterly declination (Reynolds, 1977). Ages from 
single-crystal laser-fusion 40Ar/39Ar analyses of sanidine range from 2.123 to 
2.0794 Ma (Ellis and others, 2012; Rivera and others, 2014).

Rhyolitic volcanic rocks of the Heise volcanic field, undivided  (Pliocene- Late 
Miocene)—Welded and unwelded rhyolite tuffs and rhyolite lava flows; 
locally interbedded with tuffaceous, weakly cemented, clay, sand, and 
gravel. Not exposed in the map area; used on cross sections and Fig. 2. 
Water and geothermal test wells indicate as much as 700 m (2300 ft) of 
rhyolitic rocks underlie the map area (Embree and others, 1978; Kunze and 
Marlor; 1982). The HVF tuffs consist mostly of large-volume, generally 
densely welded ignimbrites erupted from overlapping, nested calderas. 
However, rhyolitic lavas apparently comprise much of the section 
penetrated by the Madison County  geothermal test well. HVF ignimbrites 
range in age from about 6.62 Ma to 4.46 Ma, while rhyolitic lavas ages 
range from about 6.2 Ma to about 3.5 Ma (Morgan and McIntosh, 2005; 
Watts and others, 2011).

Qth

Qgh

Qaf

Qas

Qaht

Qgsr

m

Qel
Qyh

Qyh

Tbr
Tbr
Qel

Qel

Qs

Qc

Qb

Qbm

Qbs

Thr

The IGS does not guarantee this map or digital data to be free of errors nor 
assume liability for interpretations made from this map or digital data, or 
decisions based thereon. 

Sample
Plateau

Age (Ma)
Plateau Age 

% 39Ar
Steps
Used

Steps
UsedIsochron Age (Ma)

Pre-YHB@BYU-1

Pre-YHB@BYU-2

1-8

1-8

3.535 ± 0.0749

3.514 ± 0.0036

3.61 ± 1.08

3.56 ± 1.64

2-6

4-6

79.4

30.5

Table 1.  40Ar/39Ar ages for groundmass concentrate from the basalt of 
Rexburg (M. Kuntz, written communication, 2006). Two aliquots of the 
same sample were step-heated (8 steps) from 750° to 1450°�C. Errors 
are 2σ.

Table 2. Paleomagnetic data for the Sugar City geothermal test well in
the Rexburg quadrangle.

Sample
number

Sample
Depth (ft.)Latitude Longitude

Unit 
name n D˚ I˚ α95 R κ Polarity Treatment

n = number of cores used / number of cores measured.
D˚ = site mean declination of characteristic remanent magnetization (ChRm).
I˚ = site mean inclination of ChRM.
α95 = confidence limit for the mean direction at the 95% level.
κ = precision parameter.
Polarity: N = normal; R = reverse.
Principal component analysis of steps (PCA) used to isolate ChRM.
All analyses performed in IGS paleomagnetism laboratory.

09P11 Tbr 43.88400 -111.77200 428 3 255 -59.2  0.9 3.000

09P12 Tbr 43.88400 -111.77200 369 3 208 -64.5  4.0

R

R

PCA

PCA2.998

19661

950

09P11 43.884 -111.772 428 Tbr 46.92 1.948 16.55 12.28 0.182 7.654 9.907 2.846 0.369 0.3266 98.98 -0.09 103 87 29 275 243 7.3 267 162 30 15.0 20 56 112 3 18 37 1 21 1

09P12 43.884 -111.772 369 Tbr 46.83 2.173 16.25 12.65 0.197 7.334 9.966 2.782 0.306 0.3376 98.83 -0.04 92 78 30 286 264 5.9 267 180 33 16.0 20 55 121 3 19 41 1 26 0

09P13 43.884 -111.772 313 Qbm 48.05 2.799 13.64 14.59 0.278 5.138 8.520 2.821 1.352 1.2478 98.43 -0.04 49 55 40 176 789 31.7 240 1047 81 58.7 23 38 172 8 76 156 4 82 2

Table 3. Major oxide and trace element chemistry of basalt from the Sugar City geothermal test well collected in the Rexburg quadrangle.

Sample
number

Sample
Depth (ft.)Latitude Longitude

Map 
unit SiO2 TiO2 Al2O3 P2O5FeO** MnO MgO CaO Sum LOI Ni Cr Sc V Ba Rb Sr Zr Y Nb Ga Cu Zn Pb La Ce UNdSmNa2O K2O

Trace elements in parts per million*Major elements in weight percent*

* Major elements are not normalized.
** Total Fe expressed as FeO.
All analyses performed at Washington State University GeoAnalytical Laboratory, Pullman, Washington.
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Figure 2. Lithologic logs of geothermal test wells from the Rexburg quadrangle showing the upper 
360 m (1100 ft) of each well. The Sugar City log is based upon continuous cores (Embree and others, 
1978) while the Madison County log is based upon drill cuttings (Kunze and Marlor, 1982). Samples 
of basalts from the Sugar City cores were analyzed for paleomagnetic inclination (Table 2) and for 
major and trace elements (Table 3). A rhyolite at 229 m (693 ft) in the well was dated by the zircon 
fission track method at about 3.5 Ma (sample BB3-770; Morgan and others, 1984). 

Figure 1. Major structural features of the map area. Location of Rexburg quadrangle indicated 
with box. Red stars are basaltic vents. Green stars are pit craters on Rexburg bench. RF is 
Rexburg fault. HF is Heise fault. GVF is Grand Valley Fault. MB are Menan Buttes volcanic rift. 
SBLC is Sommers Butte-Lyons Creek volcanic rift. Thin yellow lines are small offset faults and 
lineaments.
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