The map displays the geologic features of the Rigby Quadrangle in Jefferson and Bonneville Counties, Idaho. It includes outcrops, basalt lava flows, and alluvial deposits. The study area is located 11 km (7 mi) west of Rigby between about 200-400 ka. Clay deposits are also present. The map also shows the interfingering of two basalt lava flows with alluvial deposits.

REFERENCES


SYMBOLS

- Dark shaded areas approximately located
- Outline of the USGS DEM grid block and unit

ACKNOWLEDGMENTS

Published and sold by the Idaho Geological Survey.

Reviewed by J.D. Kauffman, Idaho Geological Survey.

Field work conducted 2007.

The Rigby quadrangle lies in the middle of the huge outwash fan of the Snake River Plain. The outwash deposits are formed from the alluvial fans of the Snake River, which extend for hundreds of kilometers from the river. The fan is composed of sand, silt, and gravel, with occasional bedrock outcrops. The deposits are typically 1-2 km wide and up to 100 m thick. The deposits are overlain by younger alluvial fans, and the older deposits are often eroded and reworked by subsequent fans.

The Snake River Plain is a large sedimentary basin that extends for hundreds of kilometers across Idaho, Montana, and Wyoming. It is composed of late Pleistocene and Holocene alluvial fan deposits, and is a major source of sand and gravel for construction and agricultural use.

The map shows the interfingering of two basalt lava flows with alluvial deposits. The basalt flows are typically 1-2 km wide and up to 100 m thick, and are composed of a variety of volcanic rocks, including basalt, andesite, and rhyolite. The flows are typically welded, and are often associated with pyroclastic deposits, such as ash and tuff.

The alluvial deposits are typically composed of sand, silt, and gravel, and are often overlain by younger alluvial fans. The deposits are typically 1-2 km wide and up to 100 m thick, and are composed of a variety of materials, including sand, silt, and gravel. The deposits are often associated with Pleistocene and Holocene volcanic activity, and are typically eroded and reworked by subsequent fans.