INTRODUCTION

The Snake River Plain is a shield volcano complex in southeastern Idaho that is part of the Yellowstone hotspot track (Tarkian and others, 1980, 1993). The Plain extends north along the western edge of the Basin and Range Province (BAP) in Montana, Wyoming, and Idaho, and south into Nevada (figure 1). The Plain is noteworthy for its preservation of different stages of volcanism and sedimentation through time (Woodside et al., 1986). The Snake River Plain is a significant area for paleomagnetic studies (e.g., Harwood, 1973; Miles, 1981). The terraces are inferred to have formed near the end of Pinedale glaciation between ~14–13 ka because of diminishing sea level and increased discharge of meltwater from glaciers (Visher, 1973; Visher and others, 1983). These terraces are exposed along the Snake River and its tributaries (e.g., the Bannock River) and are characterized by lateral and vertical facies changes (Sawtell, 1958). The terraces mark the end of the Pinedale glaciation between ~14–13 ka because of diminishing sea level and increased discharge of meltwater from glaciers (Visher, 1973; Visher and others, 1983). These terraces are exposed along the Snake River and its tributaries (e.g., the Bannock River) and are characterized by lateral and vertical facies changes (Sawtell, 1958). This study focuses on the Snake River Plain and its associated geology, particularly the volcanic and alluvial sequences that have been preserved through time.