INTRODUCTION
The geology of the Shoshone SW quadrangle centers both the Snake River Plain and the Shoshone Range. The topography of the area is a combination of low-relief basalt flows and upland buttes. The major basalt flows are mainly composed of basalt of Black Ridge Crater, unit 1 (Pleistocene), Basalt of Bacon Butte (Pleistocene), and Basalt of Wilson Butte (Pleistocene). The basalt formed during the Pleistocene Epoch, with the youngest basaltic rocks being about 2 million years old.

DESCRIPTION OF MAJOR DEPOSITS

SOIL DEPOSITS

Eolian deposits:

Wind-blown sand and silt which form the soils that are cultivated. The dunes are thin and primarily accumulated between basalt flows. Deposits are thin and primarily accumulated between basalt flows.

Alluvial deposits:

Deposits are thin and primarily accumulated between basalt flows. Deposited during periodic floods, they form flat to gently sloping fills in shallow depressions and thin beds and laminae. Sediments largely derived from erosion of loess from dunes. Deposits are thin and primarily accumulated between basalt flows.

RELATIONSHIP OF MAP UNITS

The geologic map was based on a variety of sources, including field observations, aerial photographs, and geologic maps. It includes information on the age, thickness, and distribution of the various map units. The map was created using the latest available data and incorporates new findings from recent fieldwork. The map is useful for identifying boundaries between map units through photogeologic evaluations.

REFERENCES


Depositional sequences are shown through the use of maps and photographs. The location of the study area is indicated on a map of the Snake River Plain, Idaho. The map includes a key to the map units, a legend, and a scale bar. The map is useful for identifying the geology of the area and for planning future fieldwork.

The map was created using the latest available data and incorporates new findings from recent fieldwork. The map is useful for identifying boundaries between map units through photogeologic evaluations.