CHAPTER 3

PRELIMINARY EVALUATION OF AN
ADVANCED BINARY POWER
PLANT FOR BIG CREEK HOT SPRING

J. A. MICHELBAKER
T. W. LAWFORD
O. J. DEMUTH

EG&G IDAHO, INC.
P.O. BOX 1625, WCB, E3
IDAHO FALLS, ID 83415

August 1980
INTRODUCTION

The INEL has performed an engineering and economic feasibility study of the electric power generating potential of the Big Creek Hot Springs geothermal system in Lemhi County, Idaho. This study has been performed in cooperation with the University of Utah Research Institute (UURI) through the Technical Assistance Program. A plant size of 11 MWe net was considered with the power to be used by the nearby Blackbird Cobalt Mine and the town of Cobalt, Idaho. An advanced binary power generation cycle was determined to be the most efficient for this resource. Costs presented in this report are in second-quarter 1980 dollars.
SUMMARY

This preliminary evaluation of the Big Creek Hot Springs geothermal system is based upon electric power generation using an advanced binary cycle. Cycle optimization studies show a mixture of propane (95%) and hexane (5%) to be an effective working fluid for this plant. Due to the terrain in this area, this report proposes locating the power plant adjacent to Panther Creek where the geothermal fluid would be piped from the Big Creek Hot Springs area. Power would then be transmitted along Panther Creek approximately 13 miles to where it would tie into the Idaho power grid which supplies power to the Blackbird Mine and the town of Cobalt. This evaluation also assumes that by the use of directional drilling, multiple geothermal wells can be located on the same well pad.

Cost estimates were made for average well flow rates of 200,000 lb/hr and 400,000 lb/hr with an average resource temperature of 300°F (149°C). The results show that the cost of power at the lower flow rate would be about 160.2 mill/kWh and 122.2 mill/kWh at the higher flow rate. If a well life of 15 years is assumed, these costs would be increased by 15.5 mill/kWh and 8.6 mill/kWh respectively to cover the cost of replacement wells.
DISCUSSION

A. General
This report presents a preliminary engineering and economic study performed by the INEL for a geothermal power plant located at the Big Creek Hot Springs geothermal system in Lemhi County, Idaho. The proposed plant will produce 11 megawatts (net) of electricity which will be used to power operations at the Blackbird Cobalt Mine and supply additional power to the Town of Cobalt, Idaho.

B. Power Plant Performance

The resource temperature at Big Creek Hot Springs has been estimated to be approximately 300°F (149°C) by UURI. This temperature was arrived at by using a quartz conductive geothermometer. As shown in Figure 1, the net brine effectiveness (net power output per unit brine flow) at the anticipated temperature range of this resource is significantly higher for conventional binary systems than for dual flash steam systems. By utilizing mixtures of working fluids, an advanced binary cycle has been developed which has a net brine effectiveness approximately 40% greater than the conventional binary cycle at this resource temperature. This fluid is a mixture of propane (95%) and hexane (5%) and was selected as an optimum working fluid for the design temperature of the plant with the aid of the INEL computer code THERPP. Figure 2 is a pressure-enthalpy diagram of the working fluid cycle complete with the vapor dome for this mixture.

Figure 3 is a simplified power plant system diagram showing flow rates, temperatures, pressures and enthalpies for the geothermal fluid, working fluid, and cooling water. These parameters were used to evaluate the heater and condenser loads.

The heaters utilized for this system are of counterflow design with a heat transfer area of approximately 140,000 square feet. To minimize the physical size of these heaters, finned tubes were used. Three heaters 8 feet in diameter and 70 feet long will be required to meet the heat load requirements.
FIGURE 1

Net Brine Effectiveness

Brine effectiveness ~ whr/lb

Low Salinity

- Dual flash steam systems
- Binary systems

BCHS BRINE EFFECTIVENESS

Negl CO₂
1.3% CO₂

Resource temperature ~ °F

INEL-S-26 813
FIGURE 2. - Pressure - Enthalpy Diagram for Big Creek Hot Springs Working Fluid Cycle
FIGURE 3. Proposed System Diagram for the Big Creek Hot Springs Geothermal System
The condensers specified are similar to the heaters in that they are also counterflow with finned tubes. Approximately 200,000 square feet of heat transfer area is required to condense the working fluid to the parameters shown on Figure 2. Two units are required with diameters of 16 feet and 12 feet, both being 70 feet long.

Due to the anticipated difficulty of constructing the power plant near the geothermal field, INEL proposes erecting the plant adjacent to Panther Creek and piping the brine from the well field to the power plant. A sketch of this plant illustrating the major components is shown in Figure 4.

The plant capital costs total $25,490,000 and are broken down in Table 1. Many of these costs were scaled from the Geothermal Loan Guarantee Program data base and are presented in second quarter 1980 dollars.

Plant O&M costs are listed in Table 2. The staff costs have been reduced on the assumption that many of the miscellaneous plant maintenance tasks can be absorbed by the Blackbird Mine staff.

Since nearby Panther Creek freezes over in the winter, INEL proposes drilling a fresh water well near the power plant to provide cooling water makeup.

C. Field System

The field system for the Big Creek Hot Springs geothermal system was costed for two average well flow rates; 200,000 lb/hr and 400,000 lb/hr. These costs were based on having multiple production wells (up to six) directionally drilled from each well pad. The required well depth was estimated by UURI to be 6000 feet. At the lower flow rate eleven production wells are required, while six will be necessary at the higher flow rate.
1. Heaters - 8' Dia. x 70' long
2. Turbine
3. Generator
4. Condensers - 12' & 16' Dia x 70' long
5. Condensate Tank - 10' Dia x 55' long

Figure 4. Process Area for Big Creek Hot Springs Geothermal Power Plant
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Labor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,300,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>447,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,836,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,600,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,730,900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18,292,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,743,900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,103,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25,490,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. 11 MW(e) Net Binary Plant for Big Creek Hot Springs (2nd Quarter 1980 $’s)

Land & Land Rights

<table>
<thead>
<tr>
<th>Structures & Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Site Preparation</td>
</tr>
<tr>
<td>Foundations & Structures</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
</tbody>
</table>

Major Equipment

Turbine Generator	2,550,000
Condensers	3,000,000
Cooling Water Piping	321,000
Cooling Tower & Basin	
Cooling Water Pumps	40,000
Heat Exchangers	1,839,000
Condensate Tanks	86,400
Subtotal	7,836,400

Construction & Small Equipment

Crane	144,000
Electrical & Switchgear	1,134,000
I&C	1,000,000
Working Fluid Piping & Valves	490,000
Brine Piping & Valves	162,000
Misc. Tanks & Piping	200,000
Fire Protection System	150,000
Misc. Mechanical Equipment	600,000
Spare Parts & Tools	125,000
Reinjection Pumps	0
Reinjection Filters	370,000
Feed Pumps	225,000
Fresh Water Well	
Subtotal	4,600,000

Sales Tax @ 3% 373,100

Labor & Labor OH, 30% of Equip. 3,730,900

Total Direct Costs, Excl. Land Rights 18,292,500

Contractor Markup & Constr. Mgt. (15%) 2,743,900

Contingency (10%) 2,103,600

Design 2,000,000

Plant Startup 250,000

TOTAL 25,490,000
Table 2. Annual Power Plant O&M Costs
(2nd Quarter 1980 $'s)

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staffing</td>
<td>293,333</td>
</tr>
<tr>
<td>4 Operators</td>
<td></td>
</tr>
<tr>
<td>1 Laborer</td>
<td></td>
</tr>
<tr>
<td>1 Superintendent</td>
<td></td>
</tr>
<tr>
<td>Equipment Maintenance</td>
<td>216,468</td>
</tr>
<tr>
<td>Water Treatment</td>
<td>5,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>25,000</td>
</tr>
<tr>
<td>Total</td>
<td>539,801</td>
</tr>
</tbody>
</table>
Downhole pumps will be installed to assure the geothermal brine remains in the liquid state thus preventing any problems which could arise with two-phase flow in the production piping. This production piping is proposed to run approximately one mile from the well pads to the power plant located near Panther Creek. The size of this line is 20 inch NPS.

The field system costs for the previously mentioned flow rates are given in Table 3. Injection pumps are not included in these figures since the 800 foot elevation difference between the well field and power plant is assumed to provide sufficient head for injection. The injection wells will be located adjacent to the plant.

Field O&M costs are listed in Table 4. The staffing costs listed are reduced based on the assumption that many of the miscellaneous field maintenance tasks can be absorbed by the Blackbird Mine staff. This would, however, depend on who the field developer is and the working relationship maintained between the developer and the mine.

Average well life for this project is assumed to be 15 years, at which time the wells will have to be redrilled or replaced. The costs for these wells are listed in Table 4 as an average annual amount.

D. Transmission System

To transmit the power from the power plant to Blackbird Mine, it is proposed to run power line poles approximately 13 miles along Panther Creek to where the lines can tie into the Idaho power grid. The cost of this transmission system is estimated to be about $560,000. This is based on using 50 foot poles on 200 foot spans, with 1/0 stranded wire used to carry 24.9 kv at 255 amperes, 3 phase.
Table 3. 11 MW(e) Net Binary Field System Costs for Big Creek Hot Springs (2nd Quarter 1980 $'s)

<table>
<thead>
<tr>
<th>Product</th>
<th>Labor</th>
<th>Total</th>
<th>Labor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Piping</td>
<td>1,075,236</td>
<td>786,346</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Injection Piping</td>
<td>20,000</td>
<td>20,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Wellhead "X-mas Trees"</td>
<td>709,544</td>
<td>212,863</td>
<td>922,407</td>
<td>387,024</td>
</tr>
<tr>
<td>Injection Piping</td>
<td>20,000</td>
<td>20,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Well Valves, I&C</td>
<td>279,323</td>
<td>83,797</td>
<td>363,120</td>
<td>152,358</td>
</tr>
<tr>
<td>Injection Well Valves, I&C</td>
<td>205,560</td>
<td>61,668</td>
<td>267,228</td>
<td>123,336</td>
</tr>
<tr>
<td>Downhole Pumps</td>
<td>1,058,200</td>
<td>876,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales Tax (3% of materials)</td>
<td>66,381</td>
<td>41,872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor Markup & Constr. Mgt. (15%)</td>
<td>565,886</td>
<td>387,863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency (10%)</td>
<td>433,846</td>
<td>297,361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design (5%)</td>
<td>238,615</td>
<td>163,549</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well Cost (at $1.296 x 10^6/well)</td>
<td>20,736,000</td>
<td>11,664,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>25,746,919</td>
<td>15,098,524</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Annual Field System O&M Costs
(2nd Quarter 1980 $'s)

<table>
<thead>
<tr>
<th>Average Well Flow Rate (lbm/hr)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000</td>
<td>400,000</td>
<td></td>
</tr>
</tbody>
</table>

Staffing
- 1 Roustabout
- 1 Foreman
- 1/2 Mechanical Engineer
- 1/2 Production Engineer

- Staffing: $213,333

Surface Equipment Maintenance
- $100,218

Production Well Maintenance
- $264,000

Injection Well Maintenance
- $281,500

Subtotal
- $859,051

Production Well Replacement
- $979,000

Injection Well Redrilling
- $215,000

Total
- $2,053,051

- $594,923
- $534,000
- $129,000
- $1,257,923
E. Summary

Table 5 summarizes the total cost of power in mills per kilowatt-hour. These prices are based on a 30 year plant life with an annual operating factor of 80%. The total fixed cost of capital on the plant was taken as 17%, while the field cost of capital was assumed to be 25%. A comparison of these costs with the costs of alternative energy sources will yield the economic feasibility of this study.
Table 5. Price of Power (mill/kw-h)

<table>
<thead>
<tr>
<th></th>
<th>200,000</th>
<th>400,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Well Flow Rate (lbm/hr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field System Capital Costs</td>
<td>83.6</td>
<td>49.0</td>
</tr>
<tr>
<td>Field O&M Costs</td>
<td>11.1</td>
<td>7.7</td>
</tr>
<tr>
<td>Plant Capital Costs</td>
<td>56.7</td>
<td>56.7</td>
</tr>
<tr>
<td>Plant O&M Costs</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Transmission Line Costs</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Well Replacement/Redrilling</td>
<td>15.5</td>
<td>8.6</td>
</tr>
<tr>
<td>Total</td>
<td>175.7</td>
<td>130.8</td>
</tr>
</tbody>
</table>