FEASIBILITY REVIEW FOR GEOTHERMAL
CONVERSION OF EXISTING H&V SYSTEMS ON
THE BOISE GEOTHERMAL SPACE HEATING PROJECT

L.D. Torgerson
A.S. Richardson

PREPARED FOR THE
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
IDAHO OPERATIONS OFFICE UNDER CONTRACT E (10-1)-1375

DATE PUBLISHED—SEPTEMBER 1975

Aerogel Nuclear Company
IDAHO FALLS, IDAHO - 83401

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
FEASIBILITY REVIEW

FOR GEOTHERMAL CONVERSION OF EXISTING H&V SYSTEMS

ON THE BOISE GEOTHERMAL SPACE HEATING PROJECT

L. D. Torgerson
A. S. Richardson

AEROSPACE NUCLEAR COMPANY

Date Published - September 1975

Prepared for The
Energy Research and Development Administration
Idaho Operations Office
Under Contract No. E-(10-1)-1375
ABSTRACT

A pilot demonstration project to be located in the city of Boise, Idaho has been initiated to heat by geothermal water a number of public buildings. This report presents the findings of a study which was made to review the feasibility of converting the various public building heating systems to allow the use of geothermal water at a temperature of at least 170°F as a heat source.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>Summary</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>7</td>
<td>3.0</td>
<td>Project Descriptions</td>
</tr>
<tr>
<td>10</td>
<td>3.1</td>
<td>Idaho State Capitol Building</td>
</tr>
<tr>
<td>13</td>
<td>3.2</td>
<td>Len B. Jordan Building</td>
</tr>
<tr>
<td>18</td>
<td>3.3</td>
<td>Idaho Supreme Court Building</td>
</tr>
<tr>
<td>23a</td>
<td>3.4</td>
<td>Idaho Library and Archives</td>
</tr>
<tr>
<td>26a</td>
<td>3.5</td>
<td>State Office Building</td>
</tr>
<tr>
<td>29</td>
<td>3.6</td>
<td>Federal Office Building</td>
</tr>
<tr>
<td>33</td>
<td>3.7</td>
<td>Federal Post Office 8th/Bannock</td>
</tr>
<tr>
<td>36</td>
<td>3.8</td>
<td>Veterans, Retirement Home</td>
</tr>
<tr>
<td>38a</td>
<td>3.9</td>
<td>BSU, School of Business and Public</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Administration Building</td>
</tr>
<tr>
<td>42</td>
<td>3.10</td>
<td>BSU, Library Building</td>
</tr>
<tr>
<td>49</td>
<td>3.11</td>
<td>BSU, Liberal Arts Building</td>
</tr>
<tr>
<td>53</td>
<td>3.12</td>
<td>BSU, Student Union Building</td>
</tr>
<tr>
<td>59</td>
<td>3.13</td>
<td>Boise City Library</td>
</tr>
<tr>
<td>63</td>
<td>3.14</td>
<td>Miscellaneous Photographs</td>
</tr>
<tr>
<td>66</td>
<td>4.0</td>
<td>Acknowledgements and References</td>
</tr>
</tbody>
</table>
FIGURES

Page 4
Partial City Map - Boise

Page 5
Figure 1 Capitol Mall Plot Plan

Page 6
Figure 2 Boise State University Plot Plan

Page 8
Figure 3 Typical Modifications to Existing Hot Water Heating Systems

Page 9
Figure 4 Typical Modifications to Existing Forced Air Heating Systems

Page 11
Figure 1-1 Idaho State Capitol Building Mechanical Room

Page 14
Figure 2-1 Len B. Jordan Building Plan Mechanical Room

Page 15
Figure 2-2 Len B. Jordan Building Mechanical Room

Page 19
Figure 3-1 Idaho Supreme Court Building Penthouse

Page 20
Figure 3-2 Idaho Supreme Court Building Penthouse

Page 21
Figure 3-3 Idaho Supreme Court Building Mechanical Room

Page 22
Figure 3-4 Idaho Supreme Court Building Mechanical Room

Page 24
Figure 4-1 Idaho State Library Mechanical Room

Page 25
Figure 4-2 Idaho State Library Mechanical Room

Page 27
Figure 5-1 State Office Building Mechanical Room

Page 28
Figure 5-2 State Office Building Mechanical Room

Page 30
Figure 6-1 Federal Office Building Mechanical Room

Page 31
Figure 6-2 Federal Office Building Mechanical Room

Page 34
Figure 7-1 Federal Post Office Mechanical Room

Page 37
Figure 8-1 Idaho Veteran's Home Mechanical Room

Page 39
Figure 9-1 BSU School of Business and Public Administration Building Mechanical Room

Page 40
Figure 9-2 BSU School of Business and Public Administration Building Mechanical Room
<table>
<thead>
<tr>
<th>Page</th>
<th>FIGURES (Cont'd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Figure 10-1</td>
</tr>
<tr>
<td>44</td>
<td>Figure 10-2</td>
</tr>
<tr>
<td>45</td>
<td>Figure 10-3</td>
</tr>
<tr>
<td>46</td>
<td>Figure 10-4</td>
</tr>
<tr>
<td>50</td>
<td>Figure 11-1</td>
</tr>
<tr>
<td>51</td>
<td>Figure 11-2</td>
</tr>
<tr>
<td>54</td>
<td>Figure 12-1</td>
</tr>
<tr>
<td>55</td>
<td>Figure 12-2</td>
</tr>
<tr>
<td>56</td>
<td>Figure 12-3</td>
</tr>
<tr>
<td>57</td>
<td>Figure 12-4</td>
</tr>
<tr>
<td>60</td>
<td>Figure 13-1</td>
</tr>
<tr>
<td>61</td>
<td>Figure 13-2</td>
</tr>
</tbody>
</table>
This report presents and summarizes the findings of a study to evaluate the feasibility of converting various building heating systems in Boise, Idaho so as to allow the use of geothermal water at 170°F as a heat source. Of the many buildings investigated, this report addresses itself to those buildings which appear to have the greatest potential for conversion to hot water heat. Those buildings having such potential are currently heated using hot water pumped to convectors or with heated air circulated to room diffusers through ductwork and include:

Circulated Hot Water
- Idaho State Capitol Building (80% Hot Water)
- Idaho Veterans Retirement Home (100% Hot Water)
- Boise City Library (75% Hot Water)

Forced Air
- Len B. Jordan Building
- Idaho Supreme Court Building
- Idaho State Library and Archives Building
- School of Business Building BSU
- Library Building BSU
- Liberal Arts Building BSU
- Student Union Building BSU
- Federal Office Building
- Federal Post Office 8th and Bannock

Modifications to these buildings such that geothermal hot water could be used in the heating systems include:

1. Installation of a heat exchanger in existing piping such that geothermal hot water could be used to supply heat to the heating system water in the circulated hot water systems.

2. Installation of a hot water coil in the existing ductwork such that geothermal hot water could be used to supply heat to the air in the forced air heating systems.

Buildings in the proposal or initial construction stages which were discussed with persons involved with the design and approval of such design include: The State Office Building, City/County Office Complex and four new schools. Those individuals were made aware of the Geothermal Project and that they should make every effort to see that provisions were made so that geothermal hot water could be made a part of the heating system with a minimum of modifications.
2.0 INTRODUCTION

A study was undertaken to investigate the heating systems in various buildings in Boise, Idaho and determine the feasibility of converting or making modifications such that geothermal water at 170° F could be used as an energy source. For the purpose of this report an assumption was made that sufficient geothermal water at 170° F was available for use and also available was a means for the disposal of thermally spent geothermal waste water. This report, therefore, addresses itself only to building heating systems and their potential for conversion such that a hot water heat source could be utilized.

The following buildings were investigated:

1. Idaho State Capitol Building
2. Boise City Library
3. Idaho Veterans Retirement Home
4. Len B. Jordan State Office Building
5. Idaho Supreme Court Building
6. Idaho State Library and Archives Building
7. Federal Office Building
8. Federal Post Office Building
9. School of Business Building BSU
10. Library Building BSU
11. Liberal Arts Building BSU
12. Student Union Building BSU
13. Marion Hall on the Capitol Mall Grounds
14. Ada County Court House
15. Veterans Hospital Complex
16. Boise City Schools, 41 Each
17. Boise State University Central Boiler Plant
18. Idaho Capitol Mall Central Boiler Plant

Note: Refer to the Boise Partial City Map, Capitol Mall Plan and Boise State University Plan for the location of the above buildings with the exception of the 41 public schools (#16). The schools are dispersed throughout the City.
Of the referenced buildings, the first 12 were found to have, in varying degrees, the greatest potentials for conversion to geothermal hot water heat.

The remainder of the buildings, items 13 through 18, were found to be poor candidates for geothermal conversion. Marion Hall, the Ada County Court House and the Veterans Hospital Complex are steam heated using for the most part steam convectors. The conversion of these systems would require new heating convectors and associated pipe and fittings throughout each building.

The Boise City School buildings are for the most part steam heated wall convectors passing a good percentage of outside air through a heating coil and distributing it within the room. This type of convектор requires steam so as to keep the unit from freezing. There are also direct fired natural gas heating units in four schools, and one smaller school with a forced air system. Some of the steam plants for the various schools are said to return condensate at 120°F for 130°F. Geothermal hot water might at some time be considered to preheat boiler feed water to 160°F and eliminate a small portion of the boiler load but such conversions are not felt to be within the scope of the project.

The two steam plants, one at the Capitol Mall the other at Boise State University were inspected to determine if geothermal hot water could be used for preheating condensate. Both of these facilities return condensate at 155°F to 160°F and as such only a negligible gain (5%) could be realized from geothermal hot water at 170°F.

This report addresses itself to the various modifications required at each building such that geothermal hot water heating could be incorporated into existing systems. The recommendations are based on preliminary investigations and serve only to depict one possible method of performing conversions. It will be noted that the existing heating systems, steam coils, heat exchangers, etc., are not shown to be removed when the geothermal modifications are made. There is a two fold reason for this: First, this being somewhat a pilot project for this area it is felt until the geothermal source has been proven, a back-up system is required. Secondly, the proposed geothermal heating systems which could be fit into existing equipment may not carry the total heating load and as such would require an additional heat source. In the future, if proven geothermal sources are used, there is no reason a building's heating system could not be designed totally around geothermal hot water.
3.0 PROJECT DESCRIPTION

Of those aforementioned buildings having potential for geothermal heating conversion two distinct building heating concepts are apparent, hot water circulated to convectors located in heated spaces and heated forced air blown to diffusers located in heated spaces. To modify existing hot water systems a geothermal hot water heated heat exchanger would be installed in series with the existing steam heated heat exchanger. Water to be used for heating would then be pumped through the new heat exchanger and back into the existing hot water piping. Refer to Figure #3. To modify the heated forced air systems a new hot water coil would be installed in the existing ductwork. Air to be used for space heating would then be drawn or blown thru the geothermal hot water heating coil and continue on through existing ductwork. Refer to Figure #4. The modifications required to existing forced air systems such that a new hot water coil can be installed vary in complexity and could include:

1. Modifications to existing supply or return air ductwork.

2. Installation of larger blower motor to overcome additional hot water coil static pressure.

3. Installation of a "dummy coil" in the cold deck such that the proper static pressure is maintained relative to the hot deck.

4. Sheet metal modifications to existing air handler enclosures.

5. Miscellaneous piping and control modifications.

The following subsections depict in some detail the heating and cooling system for each of the twelve buildings found to have geothermal hot water heating potential. Also, shown is one possible method of performing necessary modifications such that new heat exchangers and hot water heating coils could be installed in the existing systems.
FIGURE 3
TYPICAL MODIFICATIONS TO EXISTING HOT WATER HEATING SYSTEMS
FIGURE 4
TYPICAL MODIFICATIONS TO EXISTING FORCED AIR HEATING SYSTEMS
3.1 Idaho State Capitol Building

At the present time approximately 80% of the Capitol Building is heated with hot water with plans to convert the remaining 20% to hot water within the near future.

The existing system uses a steam/water heat exchanger to heat water which is then circulated to convectors located throughout the Capitol Building. In the near future an additional circulating pump and heat exchanger will be installed to carry the load as more and more of the Capitol Building is converted to hot water heat.

Modifications to the system to allow the use of geothermal hot water would be very minor and require only a geothermal water/water heat exchanger, miscellaneous piping and valves. The existing circulating pumps would then draw or pump water through the existing steam/water heat exchanger and also through the new geothermal water/water heat exchanger.

Refer to Figure 1-1 and photographs 1-1, 1-2 and 1-3 at the end of this subsection. Locations from which the photographs were taken are indicated on Figure 1-1.
Two hot water circulation pumps

Photo 1-2
Hot water circulation lines with floor space reserved for future hot water convector. One hot water convector is shown in the background and to the right.

Photo 1-3
Close up of the hot water convector with associated piping and valving
3.2 Len B. Jordan State Office Building

The Len B. Jordan State Office Building is presently heated and cooled through a two pipe HVAC forced air system covering all but the E.O.C. area. The E.O.C. area in the basement is heated and cooled through a package HVAC forced air unit. Steam is supplied to both systems from the Capitol Mall Central Boiler Plant. Heat is supplied to the forced air through steam coils located downstream from the fans.

Modifications to the systems would include the installation of a geothermal hot water fin tube coil located between the existing steam coils and the fans. The new coils will add some additional pressure drop in the system and as such the fans will be sped up. No investigation was made at this time to determine if sufficient fan motor capacity exists or if new fan motors will be required.

Refer to Figures 2-1 and 2-2 and photographs 2-1 through 2-7 at the end of this subsection. Locations from which the photographs were taken are indicated on Figure 2-1.

* Emergency Operational Control
Plan: Mechanical Room

Legend:
- #1: Existing Building & Equipment
- #2: New Equipment

Note: All existing piping & equipment is not shown.
SECTION 1/16

"A" = 1/0"

FIGURE 2-2
LEN B. JORDAN BLDG.
MECHANICAL ROOM
Len B. Jordan State Office Building

Photo 2-1
Sound attenuation material installed on discharge side of coils

Photo 2-2
Access door shown on left to supply air plenum and heating/cooling coils. In the background, refrigeration and steam piping are shown.

Photo 2-3
Steam heating coils are shown at the top right and cooling coils directly below.

Photo 2-4
Upper portion of cooling coils.
Steam heating coils shown at the top left and cooling coil directly below.

Intake end of package air conditioner for the E.O.C. area shown with the fan motor in the background.

Intake end of package air conditioner for the E.O.C. area.
3.3 Idaho Supreme Court Building

The Idaho Supreme Court Building is presently heated and cooled through one two pipe HVAC forced air system covering all but the court rooms and Judges Chambers. The Court rooms and Judges Chambers are heated and cooled through a package HVAC multizone forced air unit. Steam is supplied to both systems from the Capitol Mall Central Boiler Plant. Heat is supplied to the forced air through steam coils located downstream from the fans.

Modifications to the two pipe HVAC forced air system located in the basement would include the installation of a geothermal hot water fin tube coil located between the existing steam coils and the fan.

Modifications to the package HVAC multizone forced air unit located in the penthouse while feasible could be extensive. The multi-zone outlet ductwork may require rework such that one large geothermal hot water coil or several small coils, one in each zone outlet, could be installed. This rework would be expensive and a cost benefit analysis should be made during the initial design stages of the project to determine if in fact this unit should be modified.

Refer to Figures 3-1 through 3-4 and photographs 3-1 through 3-4 at the end of this subsection. Locations from which the photographs were taken are indicated on Figures 3-1 and 3-3.
RETURN DUCT NOT SHOWN
RETURN CAN NO. 2
SUPPLY DUCTS NOT SHOWN

NEW HEATING COIL

30" X 30" PA DUCT
180" X 32"
PA LOUVER

PLAN 4" = 1'-0"

ALCOHOL & EQUIP
IS NOT SHOWN

FIGURE 3-1
IDAHIO SUPREME
COURT BLDG.
PENTHOUSE
FIGURE 3-A
IDAH0 SUPREME
COURT BLDG.
MECHANICAL ROOM
Photo 3-1
Side view of the hot/cold deck and discharge duct work for the multizone package unit in the penthouse.

Photo 3-2
Front or discharge end view of the multizone package unit in the penthouse.

Photo 3-3
Heating coils above and cooling coils below for the mechanical room installed HVAC unit.

Photo 3-4
Exterior view of heating/cooling coil section of the mechanical room HVAC unit showing access doors, steam and refrigeration piping to coils.
3.4 Idaho State Library and Archives

The Idaho State Library and Archives is presently heated and cooled using a two pipe HVAC forced air system. Steam is supplied to the forced air fin tube heating coils from the Capitol Mall Central Boiler Plant.

Modifications to the system would include the installation of a geothermal hot water fin tube coil located between the existing steam coils and the fan. The new coils will add some additional static pressure drop in the system and as such the fan will be sped up. No investigation was made at this time to determine if sufficient fan motor capacity exists or if a new fan motor will be required.

Refer to Figures 4-1 and 4-2 and photographs 4-1 and 4-2 at the end of this subsection. Locations from which the photographs were taken are indicated on Figure 4-1.
Photo 4-1
Exterior view of hot/cold deck showing access doors and steam piping.

Photo 4-2
Exterior view of hot/cold deck showing steam and refrigeration piping.
3.5 State Office Building

The State Office Building is in the initial construction phase at this time. Construction drawings were reviewed and the heating and ventilating system found to be a two-pipe forced air HVAC type. Steam for the heating coils will be supplied from the Capitol Mall Central Boiler Plant.

Modifications to this system would include the installation of a geothermal hot water fin tube coil located adjacent to the steam coils. Since this building is in the initial construction stages the design could be changed as required to optimize the installation of a hot water coil in series with the steam coil.

Refer to Figures 5-1 and 5-2 at the end of this subsection.
The Federal Office Building is presently heated and cooled using two pipe HVAC forced air systems. The two mechanical rooms containing the supply fans, steam and chiller coils, return/fresh air/exhaust by pass dampers, associated equipment enclosures, etc., are both located in the penthouse. The supply ductwork distributes tempered air throughout the building and the air is then returned to the penthouse through two return air shafts. Steam for the heating coils is supplied from two boilers located in the basement mechanical room.

Modifications to each system would include the installation of geothermal hot water fin tube coils in the return air sections between the return air shaft outlet and the return air/make up air mixing chamber. The new coils will add some additional static pressure drop in the system and as such the fans will be sped up. No investigation was made at this time to determine if sufficient fan motor capacities exist or if new fan motors will be required.

Refer to Figures 6-1 and 6-2 and photographs 6-1 through 6-4 at the end of this subsection. Locations from which the photographs were taken are indicated on Figure 6-1.
SECTION A

FIGURE 6-2

FEDERAL OFFICE BUILDING
MECHANICAL ROOM

'1/4" = 1'-0"
Photo 6-1
Intake duct work and plenum for south unit. Heating/cooling coils on the right side.

Photo 6-2
Distribution piping for south unit.

Photo 6-3
Distribution piping for north unit.

Photo 6-4
Intake duct work and heating/cooling coils on north unit.
3.7 Federal Post Office, 8th/Bannock

The Federal Post Office @8th and Bannock is presently heated using steam heated forced air units located on each floor of the building. Steam is supplied to each unit from one natural gas steam boiler and a coal fired back-up boiler.

Modifications to each forced air unit would include the installation of a geothermal hot water fin tube coil. A possible location for the new coil which would require a minimum of modifications to existing equipment is in the return air intake at each unit. This location would be on the suction side of the fan and as such a coil should be sized to minimize the static pressure drop. The fan will also be sped up so as to maintain the proper air flow. No determination was made at this time to determine if sufficient fan motor capacity exists or if new fan motors may be required.

Refer to Figure 7-1 and photograph 7-1 at the end of this subsection.
SECTION (TYPICAL FOUR PLACES)
SEE PHOTO 7-1

FIGURE 7-1
FEDERAL POST OFFICE
MECHANICAL ROOM
Photo 7-1

Intake end of air handler with filters and return duct.
The Idaho Veterans Retirement Home is presently heated with hot water using two steam boilers, a steam/water heat exchanger, circulating pumps and convectors located throughout the building.

Modifications to the comfort heating system to allow the use of geothermal hot water would be very minor and require only a geothermal water/water heat exchanger, miscellaneous piping and valves. The existing circulating pumps would then draw or pump water through the existing steam/water heat exchanger and also through the new geothermal water/water heat exchanger.

Modifications to allow the 140°F and the 180°F water storage tanks to be heated geothermally would be similar to the above and require new geothermal water/water heat exchangers and associated pipe and valves.
Photo 8-1
View of two steam boilers for heating system.

Photo 8-2
Two hot water storage tanks. One operates at 180°F the other at 140°F.
The School of Business and Public Administration Building (Classroom - Office Building) is presently heated and cooled using a two pipe HVAC forced air system. Steam is supplied to the forced air fin tube heating coils from the University Control Boiler Plant.

Modifications to the system would include the installation of geothermal hot water fin tube coils located between the existing steam coils and the fans. The new coils will add some additional static pressure drop in the system and as such the fans will be sped up. No investigation was made at this time to determine if sufficient fan motor capacity exists or if a new fan motor will be required.

Refer to Figures 9-1 and 9-2 and photographs 9-1 and 9-2 at the end of this subsection. Locations from which the photographs were taken are indicated on Figure 9-1.
SCHOOL OF BUSINESS AND PUBLIC ADMINISTRATION BUILDING, BSU

Photo 9-1
Piping for hot/cold deck.

Photo 9-2
Rear face view of hot/cold deck.
3.10 Library Building, BSU

The Library Building was constructed in two phases; the initial phase included two forced air multizone units and a hot water perimeter heat system, the second phase included a penthouse and a two pipe HVAC forced air system. Steam is fed to each multizone, the hot water heat exchanger and the two pipe system from the University Central Boiler Plant.

Modifications to each unit will be made and include the installation of geothermal hot water fin tube coils in each multizone unit and the two pipe HVAC forced air system and the installation of a geothermal hot water/water heat exchanger in series with the existing hot water system.

The new coils will add some additional static pressure drop in the multizone systems and the two pipe system and as such the fans will be sped up. No investigation was made at this time to determine if sufficient fan motor exists or if a new fan motor will be required.

Refer to Figures 10-1 through 10-4 and photographs 10-1 through 10-6 at the end of this subsection. Locations from which the photographs were taken are indicated on Figures 10-1 and 10-3.
PLAN "1" = 1'-0"

ALL EXIST. PIPING & EQUIP.
IS NOT SHOWN

FIGURE 10.1
BOISE STATE UNIVERSITY
LIBRARY-LEARNING CENTER
MECHANICAL ROOM
BASEMENT
SECTION A
"\(\frac{1}{4}\)" = 1'-0"

FIGURE 10-2
BOISE STATE UNIVERSITY
LIBRARY-LEARNING CENTER
MECHANICAL ROOM
Photo 10-1

Wall mounted heat exchanger in Mechanical Room.

Photo 10-2

Piping to and discharge duct work from A/C unit #1 in Mechanical Room.

Photo 10-3

Side view of A/C unit #1 in Mechanical Room.
Photo 10-4
Discharge duct work from A/C unit #2 in Mechanical Room.

Photo 10-5
Sound attenuators on discharge side of hot/cold deck in learning center addition Mechanical Room.

Photo 10-6
Hot/cold deck in learning center addition Mechanical Room.
The Liberal Arts Building is presently heated and cooled thru one multizone HVAC unit and one hot water heat exchanger both of which are located in the basement. Steam is supplied to each unit from the University Central Boiler Plant.

Modifications to each unit would include the installation of one geothermal hot water fin tube coil in the existing HVAC unit and the installation of one geothermal hot water/water heat exchanger series in series with the existing hot water piping. The new fin tube hot water coil will add some additional pressure drop through the forced air system and as such, the fan will be sped up. No investigation was made at this time to determine if sufficient fan motor capacity exists or if a new fan motor will be required.

Refer to Figures 11-1 and 11-2 and photographs 11-1 through 11-3 at the end of this subsection. Locations from which the photographs were taken are indicated on Figure 11-1.
Photo 11-1
Hot water convertor.

Photo 11-2
Side view of return fan above and A/C unit #1 below.

Photo 11-3
View of supply air plenum from A/C unit #1.
The Student Union Building was constructed in two phases; the Student Union Building was built first and the Student Union Building Expansion followed at some later date. The total building is heated and cooled using eight multi-zone HVAC units, three Carrier HVAC units installed during the first phase and five Trane units installed during the expansion. Two of the Carrier units and four of the Trane units are installed in penthouses while one Carrier unit and one Trane unit are installed in the basement. Steam is fed to each unit from the University Central Boiler Plant.

Modifications to each of the eight units would include the installation of geothermal hot water fin tube coils located in the existing ductwork. In general, it is felt the least extensive modification would be to install the new coils in the return air ductwork between the electrostatic filters and the fan enclosure. The new coils will add some additional static pressure drop and as such the fans will be sped up. No investigation was made at this time to determine if sufficient fan motor capacity exists or if a new fan motor will be required.

Refer to Figures 12-1 through 12-4 and photographs 12-1 through 12-3 at the end of this subsection. Locations from which the photographs were taken are indicated on Figure 12-3.
FIGURE 12-1
BOISE STATE UNIVERSITY
STUDENT UNION
BUILDING

PENTHOUSE PLAN 1/8"=1'-0"

SUPPLY PLENUM
FILTER
MIXED-AIR PLENUM

FOR A/C UNITS 2a
13a. SEE FIGURE 12-2
INSTALL NEW HEATING COILS IN A/C UNITS 2&3
SEE DET. 1
FIG. 12-4

A/C UNIT NO. 3

A/C UNIT NO. 2
FOR ALL UNITS 2 & 3 IN PENTHOUSE, SEE FIGURE

AC UNIT NO. 3A
84x108 DN.
50x108 DN.
50x108 DN.

108x108 DN.

108x108 DN.

AC UNIT NO. 5A
80x126 DN.

PENTHOUSE PLAN 40' x 150'

NOTE:
INSTALL NEW HEATING COILS IN
AC UNITS 2A, 3A & 5A SEE DET
ALL EXISTING DUCT & EQUIP NOT SHOWN.

AC UNIT NO. 4A

FIGURE 12-2
BOISE STATE UNIVERSITY
STUDENT UNION BLDG.
PARTIAL FOUNDATION PLAN

8" = 1'-0"

ALL PIPING & EQUIP. IS NOT SHOWN

BOISE STATE UNIVERSITY
STUDENT UNION BLDG.

INSTALL NEW HEATING COIL IN EXIST. A/C UNIT NO. 1. SEE DETAIL

MECHANICAL EQUIP. R.M.

FIGURE 12:3
Figure 12.4
Boise State University
Student Union Bldg.
Photo 12-1
Side view A/C unit #1A.

Photo 12-2
Side view A/C unit #1.

Photo 12-3
Side view of A/C unit #1 with supply piping.
The Boise City Library building is presently heated using one hot water boiler located on the ground floor of the old addition and two natural gas fired forced air multi-zone heating and air conditioning units located on the roof of the new addition. Modifications to the system would include the installation of a geothermal water/water heat exchanger in the existing hot water piping. The existing circulating pumps would then draw or pump water through the existing boiler and also the new geothermal water/water heat exchanger.

The two natural gas fired forced air multi-zone units located on the roof of the new addition could be modified by installing geothermally heated hot water coils in each unit's outlet ductwork. At this time this modification appears to be quite difficult and although mentioned here it is recommended that further study be made during the initial design stages of this project.

Refer to Figures 13-1 and 13-2 and photographs 13-1 and 13-2 at the end of this subsection. Locations from which the photographs were taken are indicated on Figure 13-1.
EXIST. NATURAL GAS FIRED
 HVAC UNITS ON
 ROOF

PLAN 1:30

LEGEND:

EXIST. BLDG. & EQUIP.

FIGURE 15-A
BOISE CITY LIBRARY
PLAN
Photo 13-1
Hot water circulation pumps.

Photo 13-2
Roof mounted gas fired HVAC units.
Photographs 14-1 through 14-6 show typical installed fossil fueled boiler systems of the several buildings and building complexes studied in this feasibility study.
MISCELLANEOUS PHOTOGRAPHS

Photo 14-1
FEDERAL OFFICE BUILDING
Shown is one of the two 242 HP boilers installed.

Photo 14-2
VETERANS ADMINISTRATION HOSPITAL
Shown is typical of the three boilers installed in the Central Heating Plant. The units include 2 boilers at 13,500 #/hr and 1 boiler at 10,000 #/hr capacity.

Photo 14-3
IDAHO STATE CAPITOL MALL
Shown in the foreground is one 200 HP boiler. In addition two 400 HP boilers are presently installed with one 600 HP unit under design.
BOISE STATE UNIVERSITY CENTRAL BOILER PLANT

In the foreground is one 200 HP Powermaster boiler which is scheduled to remain. In the background are (5) 85 HP Kewaunee Fire Box boilers which are scheduled for removal.

BOISE STATE UNIVERSITY CENTRAL BOILER PLANT

Shown on the right is one 600 HP boiler. An additional 600 HP unit is scheduled for installation on the pad to the left.

BOISE STATE UNIVERSITY CENTRAL BOILER PLANT

Shown is the deaerator tank. Returned condensate is collected here and heated to 200°F before the boiler feedwater pumps in the foreground pump the water to each boiler.
John Bell, Maintenance Foreman, Ada County Courthouse
Larry Garrett, Idaho Veterans Retirement Home
Mike Goodrich, Heating Inspector, Boise
Larry Loughridge, Idaho Veterans Retirement Home
W. Mike McClintoch, Building Manager, GSA
Herb Mingle, Director of Physical Plant, Boise State University
Claire Neves, Chief Engineer, Veterans Hospital
Tom Payne, Facility Superintendent, State Capitol and State Office Buildings
Nolan Prescott, Maintenance Foreman, Federal Post Office Building
Don Radkte, H&V Maintenance and Controls Technician, State Capitol and State Office Buildings
Joe Schultz, Assistant Director of Buildings and Grounds, Boise School District
Harry Stone, Assistant to Commissioner, Department of Public Works, State of Idaho.
Tom Towey, H&V Maintenance and Controls Engineer, Boise State University
Al Vaughn, Assistant Building Manager, GSA
Don Wisdom, Engineering, Inc.

Hummel, Hummel, Jones & Shawver
Watson & Leatham Architects
Dropping and Kelley Architects
Wayland Cline and Smull Architects
Cline, Smull, Hamill, Shaw & Associates
Engineering, Inc.
Cornell, Howland, Hayes and Merryfield
DISTRIBUTION RECORD FOR ANCR-1256

External

Internal
1 - Chicago Patent Group - ERDA
 9800 South Cass Avenue
 Argonne, Illinois 60439

3 - A. T. Morphew, Classification and Technical Information Officer
 ERDA-ID
 Idaho Falls, Idaho 83401

31 - INEL Technical Library

20 - Author

Total Copies Printed - 198