Geologic Map of the St. Maries 30 X 60 Minute Quadrangle, Idaho Reed S. Lewis, Russell F. Burmester, John D. Kauffman, and Thomas P. Frost 2000 ### INTRODUCTION Preparing the geology of the 1:100,000-scale St. Maries 30' x 60' quadrangle relied extensively on previous mapping, and we supplemented that with twelve weeks of field work in 1998. The principal source was the 1:250,000-scale map of Griggs (1973) and included his unpublished 1:62,500scale field maps that formed the basis of his research. All sources and their areal extent are shown on Figures 1 and 2. The geology of the St. Maries quadrangle is also available in a digital version. The distribution of the Columbia River Basalt Group was taken largely from work by Swanson and others (1979a) and unpublished mapping by Margaret Jenks (written commun., 1998). Basalt stratigraphy, chemistry, and magnetic polarity were based on work by Wright and others (1973) and Swanson and others (1979b). Chemical types and polarity were confirmed by field sampling. The location of Tertiary sediment overlying the basalt is largely taken from unpublished mapping by Margaret Jenks (written commun., 1998) and Carl Savage (Idaho Geological Survey, unpublished files, 1979). The oldest and most abundant rocks in the St. Maries corners of the map area. Included in the uplifted regions is amphibolite as well as deformed granitic rock (orthogneiss) of probable Cretaceous age. Younger intrusive rocks of probable Eocene age include two granodiorite stocks and quadrangle are Precambrian in age. These are low-grade metasedimentary rocks of the Belt Supergroup and highgrade (amphibolite facies) metamorphic rocks whose protolith may have been the Belt Supergroup. The high-grade rocks are exposed in uplifted regions in the northwest and southeast several rhyolite and dacite dikes. The Onaway basalt of Oligocene age is exposed in the southwest corner of the map area. Flows of Miocene Columbia River basalt are widely exposed in the central and northwestern part of the map area. In many places these flows are covered with sediments, and loess deposits blanket much of the lower elevations in the western part of the area. - 1. Campbell and Good, 1963 - 2. Clough, 1981 - 3. Cunningham, unpublished geologic map - 4. Griggs, 1973 (entire map area) - 5. Griggs, unpublished geologic maps - 6. Hietanen, 1963a - 7. Hietanen, 1967 (plate 1) - 8. Hietanen, 1967 (plate 2) - 9. Hobbs and others, 1965 - 10. Jenks, unpublished parent material maps - 11. Kauffman, 1998 field mapping - 12. Lewis and Burmester, 1998 field mapping - 13. Savage, unpublished geologic maps - 14. Swanson and others, 1979a (entire map area) - 15. Breckenridge and Othberg, unpublished geologic map Figure 1. Previous mapping used as primary sources of data. This geologic map was funded in part by the USGS National Cooperative Geologic Mapping Program. - A. Appelgate, unpublished geologic maps - B. Anderson, 1940 - C. Bookstrom and others, 1999 - D. Clark, 1963 - E. Cockrum, 1986 - F. Harrison, unpublished geologic maps - G. Hayden, 1992 - H. Holland, 1947 - I. Pardee, 1911 - J. Ransome and Calkins, 1908 - K. Reid and others, 1981 - L. Umpleby and Jones, 1923 - M. Wagner, 1949 Figure 2. Previous mapping used as secondary sources of data. ## DESCRIPTION OF MAP UNITS ### UNCONSOLIDATED DEPOSITS **Qal—Alluvial deposits (Holocene)**—Stream deposits in modern drainages. Most deposits are composed of stratified and laterally discontinuous beds of pebbles, cobbles, sand, and silt. Includes reworked loess in the western part of the area near Tensed. Qls—Landslide deposits (Holocene)—Unconsolidated poorly sorted rubble, typically as boulders of basalt in a finer grained matrix. Includes large blocks of Columbia River Basalt Group near St. Maries interpreted by Griggs (1973) as landslide deposits, but which lack hummocky topography and other obvious landslide features. Few deposits are known with certainty to be landslides, perhaps because they are relatively old features without recent movement. **Qp—Palouse Formation (Pleistocene)**—Loess deposits of silt in the western part of the area. Shown only as an overlay pattern without well-defined boundaries. Map distribution taken directly from Griggs (1973), who noted the presence of buried soil horizons, some of which have well-developed clay layers. May include Tertiary sediment (*Ts*) in places or may be only a thin mantle over *Ts* deposits. **Qg**—Glacial deposits (Pleistocene)—Unsorted boulders and finer grained unconsolidated material in the valleys of the highest drainages. Possibly outwash. Ts—Sediment (Oligocene? and Miocene)—Mostly deeply weathered yellow to orange silt and clay, but also quartzite pebbles and cobbles, and sand. Clasts derived primarily from the Belt Supergroup. Near Clarkia, lakebeds of clay and silt contain extremely well-preserved leaf fossils (Smiley and Rember, 1979; Rember, 1991). Locations taken largely from unpublished maps of M.D. Jenks (written commun., 1998) and C.N. Savage (Idaho Geological Survey, unpublished files, 1979). Most deposits overlie flows of the Columbia River Basalt Group or rocks of the Belt Supergroup at elevations well above present stream levels, but several ages of deposits are preserved in the area. Younger (late Miocene? or Pliocene?), more bouldery terrace remnants are present at lower elevations along the major rivers. These remnants are deeply eroded and lack subhorizontal upper surfaces that would be expected if they were Quaternary terraces. Thickness of Ts is varied, but a well in the Tensed area passed through 265 feet (81 m) of sediment before intersecting basalt (well 44/4-18N1; Ko and others, 1974). Typical thickness is about 30 feet (10 m). ### COLUMBIA RIVER BASALT GROUP ### Wanapum Formation Tpr—Priest Rapids Member (Miocene)—Medium gray to dark gray basalt that typically has a grainy, felty texture caused by abundant small plagioclase and olivine phenocrysts and by microvesicles and diktytaxitic cavities. The denser parts of the flows are dark gray to black and fine grained; they lack the grainy texture, although small plagioclase phenocrysts are apparent. Outcrops weather gray-brown to reddish brown. In thick flows, large, poorly defined basal columns 3-6 m thick change upward to slabby, platy zones that are typically medium bluish gray on fresh surfaces. Above the platy zones, flows commonly have a thick blocky to hackly entablature that is 15 m or more thick, and in places well-developed thin, vertical to radiating columns. The top of the entablature grades into an increasingly vesicular, rubbly in places, flow top. Thin flows are more vesicular throughout and generally have only weakly developed basal columns and a vesicular flow top. Pillowpalagonite complexes are locally common at the base of flows or flow units (series of chemically similar thin flows that grade laterally into a single flow). Hyaloclastic material is also present locally at the top of some units; this material is well exposed on a logging road built in 1998 on the southeast side of Trout Creek, about 4 miles west of Calder. The Priest Rapids Member typically consists of one or more flows of Rosalia chemical type and has reverse magnetic polarity. A flow of Lolo chemical type is present in the Clarkia area. The Priest Rapids Member is the uppermost unit in the Plummer-St. Maries-St. Joe River area and directly overlies basement rocks in the upper St. Joe River drainage, where it partly fills the prebasalt topography. In the St. Maries area, it overlies the *Ted* unit, and near Harrison it overlies Tgn_2 flows. Thicknesses of individual flow units range from 8 to 25 m for thin units to >180 m for thick, valley-filling sequences in the St. Joe River drainage. #### **Eckler Mountain Member** Ted—Basalt of Dodge (Miocene)—Medium gray, coarse-grained and highly plagioclase-phyric basalt to dark gray and dense basalt with fewer but still abundant plagioclase phenocrysts. Freshly broken fragments have a coarse, irregular surface texture. Phenocrysts range in size from less than 1 mm to at least 5 mm. The smaller phenocrysts are typically lath shaped, and the larger ones are more equant. Most exposures are of the massive basal columnar part of the unit. The well-formed basal columns are 1-2 m in diameter and in places 7 m or more in length. The unit commonly weathers gray-brown to dark gray. Hyaloclastic material is associated with the Dodge basalt exposed in the railroad tunnel portal north of Benewah Lake campground. The basalt of Dodge is a valley- and basin-filling unit of normal magnetic polarity exposed around the southern end of Coeur d'Alene Lake and near and south of St. Maries. The Dodge basalt was not found in the basalt section south of Harrison along State Highway 97, although it is present on the west side of the lake south of Browns Bay. A probable Dodge vent is at Cedar Creek campground 3 miles north of Clarkia (Swanson and others, 1979a). The Dodge basalt overlies Tgn_2 basalt and is overlain by Tpr flows. Maximum thickness is approximately 40 m. ### **Grande Ronde Formation** Tgn₂—Grande Ronde N₂ magnetostratigraphic unit (Miocene)—Dark gray to black, fine-grained aphyric to very sparsely plagioclase-phyric basalt. Locally at least one flow near the top of this unit has a Priest Rapids-like grainy, felty texture. Large columns of the basal colonnade are generally exposed only in quarry cuts. Natural exposures are typically of the thick entablature, consisting of either thin, well-developed and commonly radiating columns, or poorly developed columns with a blocky, hackly character. These entablature exposures are typically cliff-forming masses that can be traced laterally for several miles. Individual flows are usually over 30 m thick and may be more than 60 m thick. Locally, hyaloclastic material is associated with the top of individual flows, especially near contacts with basement rocks. In the Hells Gulch section north of St.
Maries, an extensive hyaloclastic unit, with incorporated pods of ropy spatter and other ejecta-like debris, is at least 25 m thick and forms erosional hoodoo pillars at several locations. In other areas, the hyaloclastic material has crude stratification. Grande Ronde N2 has normal magnetic polarity and is the lowermost basalt unit exposed on most of the St. Maries quadrangle; generally, its base is either not exposed or lies directly on prebasalt basement rocks. However, on the east side of Coeur d'Alene Lake near the north edge of the St. Maries quadrangle, the top of a Tgr_2 flow is exposed along the shoreline beneath the base of Tgn_2 . This Tgr_2 flow is also present beneath the Tgn_2 along the west shoreline at Rockford Bay, but is too thin to show at map scale. Tgn_2 is overlain by either Ted or Tpr flows. Tgr_2 —Grande Ronde R_2 magnetostratigraphic unit (Miocene)—Dark gray to black, fine-grained aphyric to very sparsely plagioclase-phyric basalt similar to Tgn_2 . One flow, with reverse magnetic polarity, is the lowermost basalt unit exposed in the map area. Only the vesicular flowtop and upper part of the entablature are exposed along the east shoreline of Coeur d'Alene Lake north of Harrison. ### OLDER VOLCANIC ROCKS Ton—Onaway basalt (Oligocene)—Dark gray, fine-grained porphyritic basalt. Mapped south of the study area by Duncan (1998) who noted a distinctive brown weathering rind in places and plagioclase phenocrysts that average 1 cm in length but may exceed 5 cm. Flows have normal magnetic polarity. Originally thought to be either the upper part of the Wanapum Formation (Camp, 1981) or part of the Saddle Mountains Formation (Bush and others, 1995) of the Columbia River Basalt Group. Recent work by John Bush (oral commun., 1999) indicates that these flows are actually older than the Columbia River Basalt Group. Extruded from local vents and flowed into valleys. May also have flowed over and intruded into sediments (Ts). Thickness uncertain but may locally exceed 60 m. # **INTRUSIVE ROCKS** **Tr—Rhyolite dikes (Eocene)**—Light gray, aphanitic to very fine-grained rhyolite with sparse (2-10 percent) phenocrysts of quartz and rare potassium feldspar. Large mass along the St. Joe River east of St. Maries is a composite body containing dikes of sparsely porphyritic rhyolite and subordinate dikes of porphyritic rhyolite (or dacite?) with conspicuous K-feldspar, quartz, and plagioclase phenocrysts. **Td—Dacite dikes (Eocene)**—Gray dacite, typically porphyritic, with an aphanitic groundmass. Phenocrysts, where present, include quartz (up to 8 mm in diameter, commonly embayed) as well as plagioclase, biotite, and hornblende. Present east of Fernwood as well as north of the Merton Creek stock. Tgd—Biotite granodiorite and hornblende-biotite granodiorite (Eocene)—Gray, medium-grained, porphyritic biotite granodiorite of the Merton Creek stock, and hornblende-biotite granodiorite and biotite granodiorite of the Herrick stock (Holland, 1947). Potassium feldspar phenocrysts, 1 to 2 cm in length, compose 5 to 10 percent of the rock in some areas. Contains mafic inclusions and sparse aplite and pegmatite dikes. Weathers to coarse grus. Plagioclase in Merton Creek stock is compositionally zoned (An₁₆ to An₂₈); most zoning is oscillatory. The southern margin of the Herrick stock is compositionally diverse and includes intermingled hornblende-rich phases, some of which are well foliated. Foliation there is subhorizontal and may result from igneous flow. Foliation at Mud Cabin Creek near the northern margin is mylonitic. Age unknown, but rock resembles the Roundtop pluton to the southeast that has been dated at 52 ± 7 Ma by U-Pb methods (Marvin and others, 1984). **TKdd—Diabase and diorite dikes (Tertiary or Cretaceous)**—Mafic dikes mapped by Hobbs and others (1965) and Campbell and Good (1963) in and near the Coeur d'Alene mining district. TKla—Lamprophyre dikes (Tertiary or Cretaceous)—Mafic dikes with biotite phenocrysts mapped in and near the Coeur d'Alene mining district by Hobbs and others (1965) and Campbell and Good (1963). Single dike analysis indicates high K₂O content (6.15 percent). **TKgb—Gabbro (Tertiary or Cretaceous)**—Black to dark gray, medium- to fine-grained pyroxene gabbro. Typically has red weathering rind and develops red soil. Largest body northeast of Clarkia has squarish outline, perhaps because its emplacement was controlled by orthogonal faults or fractures; smaller intrusions are dike-like elsewhere in the south-central part of the map area. Includes diabase and gabbro dikes of Clark (1963) and Hietanen (1963a), who report plagioclase compositions of An_{47} and An_{53} . Majorelement concentrations similar to those of Tpr, but tracelement concentrations dissimilar to any known Columbia River basalt. Kog—Orthogneiss (Cretaceous)—Gray, strongly foliated, moderately lineated hornblende-biotite tonalite, biotite tonalite, granodiorite, and quartz diorite. Exposed on the eastern, upthrown side of the White Rock fault in the southeast quarter of the map area. Orthogneiss is medium grained and contains allotriomorphic granular to recrystallized mosaics of quartz and feldspar between larger biotite flakes. Hornblende typically blocky. Contains euhedral epidote interpreted as a magmatic phase. Rocks mapped as Kog are heterogeneous and samples contain a range of SiO₂ from 57 to 74 percent; K₂O varies from 0.75 to 4.25 percent. Some of the compositional variation may have originated as schlieren or mafic inclusions. Contains amphibolite bodies up to 100 m wide with contacts approximately parallel to foliation. Intercalated with muscovite schist. Foliation is overprinted locally by s-c fabric (Simpson and Schmid, 1983) with top-to-the-west sense of shear. Cut by irregular masses of pegmatite that lack flattening fabric, and on Freezeout Ridge, by a north-striking undeformed rhyolitic dike. Includes Marble Creek gneiss bodies of Reid and others (1981) and Cockrum (1986). Age is poorly known but orthogneiss is considered to be Cretaceous based on similarities with approximately 94 Ma deformed phases of the Cretaceous Idaho batholith near Lowell (Toth and Stacey, 1992). KYam—Amphibolite (Cretaceous or Proterozoic)—Black to dark gray, fine- to medium-grained, foliated to lineated hornblende-plagioclase rock. Mostly garnetiferous, with garnets up to 2 cm in diameter locally; some contain biotite instead of or in addition to hornblende. Present in schist correlated as metamorphosed Prichard Formation (Hietanen, 1967; Cockrum, 1986) and thus may be metamorphosed Proterozoic sills. However, those associated with *Kog* unit and those with pyroxene are probably Cretaceous. ## **BELT SUPERGROUP** Yl—Libby Formation (Middle Proterozoic)—Light green to dark gray siltite, darker green argillite, dolomitic siltite, and white, very fine-grained quartzite. Rocks low in the unit have mudchips and mudcracked and rippled surfaces in siltite. Quartzite increases upward. Minor dark gray argillite, alone and as carbonate-free caps on reddish weathering ferroan calcitic or dolomitic siltite and quartzite northwest of Emida, possibly in the middle of the unit. Locally, one or more stromatolite horizons occur in this interval. Siltite and white quartzite dominate the upper part to the erosional top. The presence of carbonate led Savage (1973) to assign these rocks to the Wallace Formation. Stratigraphic relations are more consistent with the carbonate being part of the Libby Formation, as mapped by Griggs (1973). Ysp—Striped Peak Formation, undivided (Middle Proterozoic)—Gray to white to pale red quartzite with lesser amounts of siltite and argillite. Shown where a lack of mapping or poor exposure prevented subdivision. Consists largely of Ysp_1 and Ysp_4 as defined by Harrison and Jobin (1963) near Clark Fork. Thin intervals of carbonate (Ysp_2) and dark gray, thinly laminated argillite (Ysp_3) were noted at a few localities but not mapped as separate units. Includes rocks along Renfro Creek northeast of Santa previously mapped as Striped Peak Formation (Griggs, 1973), but which are more highly deformed and possibly at higher metamorphic grade than Striped Peak rocks to the southwest. An alternative explanation is that these are quartzitic rocks of the Ravalli Group in thrust contact with the Wallace Formation. Ysp₄—Striped Peak Formation, member four (Middle Proterozoic)—Light gray to red, medium- to fine-grained arkosic quartzite. Beds up to 1 m thick with some intervening siltite and argillite. Fine-grained beds are similar to the Ysp₁ quartzites but have less magnetite, more yellow rusty spots, and more K-feldspar. Characteristic, however, are wellrounded, medium-size (0.3-0.5 mm) quartz grains, either as isolated grains (floaters) in a finer grained matrix or as major constituents of the rock. Ripple cross lamination and rippled surfaces more abundant than cross lamination. Includes plane lamination, some of which has hematite concentrations. Rocks are characteristically but not ubiquitously feldspathic. Visual estimates of twelve etched and stained hand specimens indicate 9 to 23 percent K-feldspar (mean of 17 percent) and 5-15 percent plagioclase (mean of 8 percent). Some Kfeldspar appears detrital, but much is present as diagenetic(?) rims on plagioclase. Common yellow-brown spots may result from weathering of ferroan calcite. Equivalent to Ysp₄ near Clark Fork (Harrison and Jobin, 1963) and to the Bonner Quartzite in the Missoula area (Nelson and Dobell, 1961). Thickness uncertain but may be as much as 1,000 m in the southwestern part of the area. Ysp_{1a}—Striped Peak Formation, argillitic part of member one (Middle Proterozoic)—Purplish red and subordinate green siltite and argillite. Layering typically 1 to 3 cm thick, with some rippled and mudcracked surfaces. Salt casts present in western part of area south of Plummer, but unit not subdivided in that
region. Minor carbonate occurs within and at the top of the member in the northeastern part of the area. This uppermost carbonate interval thickens north of the area and is mapped as Ysp_2 by Harrison and Jobin (1963) near Clark Fork. Unit is equivalent to member three of the Mount Shields Formation, described to the northeast (Harrison and others, 1986). Thickness uncertain but probably about 90 to 120 m in the northeastern part of the area and 300 m in the east-central part (north of Calder at Spooky Butte) and in the western part (southwest of Emida at West Dennis). Ysp_{1q}—Striped Peak Formation, quartzitic part of member one (Middle Proterozoic)—Pale purplish red, fine-grained, flat-laminated quartzite, and subordinate argillite and siltite. Rare ripple cross lamination and even rarer trough cross lamination in 10-to-30-cm-thick beds. Commonly contains macroscopic magnetite octahedra and some mud flakes. Base of unit is placed at lowest quartzite beds. Above them is an interval of very thinly laminated green argillitesiltite similar to that of the Ywu, unit below, with color grading upward from dark to light and the reverse. This argillite-siltite gives way upward to the quartzite-dominated part of the unit. Visual estimates of eleven etched and stained hand specimens indicate 12-20 percent plagioclase (mean of 17 percent). Only three of these samples contain Kfeldspar (7 percent or less), in contrast to the K-feldsparrich Ysp, quartzite. Equivalent to the lower part of Ysp, mapped by Harrison and Jobin (1963) near Clark Fork. Also equivalent to the lower two members of the Mount Shields Formation to the northeast described by Harrison and others (1986). Thickness at Striped Peak, immediately east of the map area, is about 820 feet (250 m; Vance, 1981). Thickens to 300 m at Spooky Butte north of Calder and to more than 450 m at West Dennis southwest of Emida. Ywu—Wallace Formation, upper member, undivided (Middle Proterozoic)—Predominantly dark gray siltite and argillite, but locally contains unmapped carbonate intervals equivalent to member two. Shown where a lack of mapping or poor exposure prevented subdivision. Includes rocks at Lolo Pass 6 miles northeast of Tensed mapped as Ywu by Griggs (1973) but which could alternatively be Ysp₃ of Harrison and Jobin (1963) mapped to the north near Clark Fork. Total thickness at Striped Peak, immediately east of area, is 1,500 feet (460 m; Shenon and McConnel, 1939). Thickens to about 1,200 m in south-central part of area at Baby Grand Mountain southeast of Emida. Ywu₃—Wallace Formation, upper member three (Middle Proterozoic)—Microlaminated and thinly laminated light green siltite and darker green argillite, green siltite, and black argillite. Subordinate 10 to 20 cm thick, locally carbonate-bearing siltite and very fine-grained quartzite. Bedding commonly uneven and wavy. Weathers yellowish brown. Thickness about 500 feet (150 m) on north side of Striped Peak just east of area (Shenon and McConnel, 1939). Thickens to the southwest, with approximately 230 m at Spooky Butte north of Calder, 335 m at St. Maries, and 490 m in the area south of Bald Mountain Lookout south of Emida. Ywu₂—Wallace Formation, upper member two (Middle Proterozoic)—Green dolomitic siltite that weathers orange, green thinly laminated and microlaminated siltite and argillite, and thin lenticular quartzite beds. Contains mudcracks and ripple marks, which are uncommon in the other two members of the upper Wallace Formation. Equivalent to the Shepard Formation present in western Montana (Lemoine and Winston, 1986). Thickness about 500 feet (150 m) on the north side of Striped Peak immediately east of the area (Shenon and McConnel, 1939). Thickness to approximately 335 m at St. Maries, but apparently thins to the southwest where it has not been mapped separately. Ywu₁—Wallace Formation, upper member one (Middle Proterozoic)—Dark gray to white, thinly laminated siltite and black argillite. Lower and upper parts have uneven, wavy laminations with graded bedding and rare ripple lamination. Middle(?) part is typically parallel laminated without grading. It commonly contains pyrite (or pyrrhotite?) and weathers rusty brown. Scapolite occurs low in the unit, mostly south of the St. Joe River, as 2-5 mm diameter poikiloblastic white ovoids and more rarely as green-brown prisms with square cross sections (Hietanen, 1967; Mora and Valley, 1989). Thickness about 500 feet (150 m) on northeast side of Striped Peak (Shenon and McConnel, 1939) and 450 to 900 m to the southwest. Ywml—Wallace Formation, middle and lower members, undivided (Middle Proterozoic)—Quartzite and siltite, typically carbonate-bearing, and argillite. Shown where lack of mapping or poor exposure prevented subdivision. Equivalent to the lower Wallace unit of Griggs (1973) and Hobbs and others (1965). Ywm—Wallace Formation, middle member (Middle Proterozoic)—White quartzite, siltite, and black argillite. Siltite and quartzite commonly contain dolomite and calcite. Characterized by uneven bedding (pinch and swell sediment type of Winston, 1986a) that consists of graded couples or couplets of quartzite or siltite-argillite in which scours and loads of quartzite cut or deform tops of subjacent black argillite. Argillite caps commonly contain ptygmatically folded siltite-filled cracks that taper downward. Carbonate typically confined to coarsest parts of bases; some carbonate-bearing quartzites develop open cross fractures that do not continue into the bounding argillite. White quartzite also occurs as hummocky cross-stratified planar beds 15-30 cm thick. Similarly thick siltite beds with the highest concentration of carbonate in the unit contain calcite ribbons, pods, and molar tooth structures. Rare stromatolites and brecciation are associated with carbonate-rich zones. Argillite in this material is typically gray instead of black and lacks siltite-filled cracks. South of the St. Joe River, scapolite is also commonly spatially associated with these zones. Where contact metamorphosed by the Herrick stock along the St. Joe River in the eastern part of the area, quartzites commonly contain abundant fine-grained epidote, and argillite is converted to hornfels. Equivalent to the middle member of the Wallace Formation as mapped by Harrison and others (1986). Thickness highly uncertain but probably as much as 1200-1500 m. Ywl—Wallace Formation, lower member (Middle Proterozoic)—Massive green siltite and thinly laminated green siltite-argillite couplets with lesser amounts of carbonate, commonly as pods in siltite. Subdivided only in a few localities northwest of Calder. Equivalent to the lower member of the Wallace Formation as mapped by Harrison and others (1986). Thickness uncertain but probably as much as 250-300 m. Ysw—Schist and phyllite of the Wallace Formation (Middle Proterozoic)—Gray muscovite and muscovitebiotite phyllite and schist, and fine-grained biotite-feldspar quartzite or granofels. Schistosity at small to large angle to relict bedding. Commonly contains pale lavender to more opaque red garnet and is the source for the Emerald Creek garnet deposits northwest of Clarkia. Is continuous with Ywu along the west boundary of the garnet zone, with distinction drawn at the garnet isograd. Toward the south also contains normally small, rarely 1-2 cm long, staurolite porphyroblasts, perhaps confined to certain layers. Also retains 1-2 cm wide, 10-to 30-cm-long muscovite concentrations with square cross sections interpreted as pseudomorphs after andalusite (Hietanen, 1963a). Atypical garnet-poor schist east of Clarkia may be metamorphosed Ywu₃, Ywl, or Ysr. Yqw—Quartzite of the Wallace Formation (Middle Proterozoic)—Fine-grained white quartzite, biotite quartzite, granofels, and calc-silicate horizons. Most of unit probably is a metamorphic equivalent of *Ywm*; some in Emerald Creek drainage northwest of Clarkia may be metamorphosed *Ywu*₂, and that east of Clarkia possibly represents more carbonaterich parts of *Ywl*. Metamorphic grade increases southward, as indicated by a southward progression from small muscovite porphyroblasts to phlogopite or biotite clots around 1 to 4 mm void spaces, and then to amphibole and rare diopside. Tremolite-actinolite is more common toward the east and hornblende toward the west. Voids are interpreted as former calcite grains. Red-brown weathering, carbonate-rich siltite zones persist at this grade. Scapolite occurs in some of the biotite-rich (black argillite protolith) layers as poikiloblastic white, stubby, irregular prisms and ovoids. At the highest metamorphic grade, stubby, ragged prisms of light green tremolite occur in calc-silicate granofels. Ysr—St. Regis Formation (Middle Proterozoic)—Pale purple to gray siltite, argillite, and quartzite. Also light green siltite and darker green argillite or dark green siltite-light green argillite couplets. Typically mudcracked 1-cm-thick siltite-argillite couplets, but with thin (2-5 cm) and rarer thick (10-20 cm) fine-grained quartzite beds with green argillite caps, similar to those of the Revett Formation. Thickness uncertain but probably as much as 450 to 600 m. Ysrv—Schist of the Ravalli Group (Middle Proterozoic)—Muscovite-rich schist, thin quartzite intervals, and minor calc-silicate rocks. Exposed only in the extreme eastern part of map. Unit is probably equivalent to the St. Regis Formation of the Ravalli Group but may include part of the Revett Formation. Tentatively assigned to the Ravalli Group on the basis of stratigraphic position. **Yrb—Revett and Burke Formations, undivided (Middle Proterozoic)**—A combined unit utilized by Griggs (1973) where rocks are poorly exposed in isolated hills and ridges. Mostly light gray to greenish gray siltite and white vitreous quartzite. Yr—Revett Formation (Middle Proterozoic)—Quartzite with siltite and argillite. Characteristically 20-cm to rare 1m-thick beds of fine-grained to rare medium-grained
quartzite. Some vitreous; most feldspathic with orange-brown spots. Much is flat laminated. Rippled tops and cross lamination more common than trough cross lamination. Rare mud clasts 2-10 cm long occur in lower parts of some thicker beds; also rare load casts and convolute bedding. Zones of whiteweathering quartzite 10-50 m thick alternate with zones of brown-stained, thinner bedded quartzite and siltite with mud cracked surfaces; thickest beds appear low in the unit. Brown color associated with higher density of brown spots, perhaps the residue from weathering of ferroan calcite. Visual estimates of nine etched and stained hand specimens indicate 5 to 12 percent K-feldspar (mean of 10 percent) and 8-17 percent plagioclase (mean of 12 percent). One sericitized(?) sample from along Big Creek in the northeastern corner of the area lacks feldspar. Some K-feldspar appears detrital, but much is present as diagenetic(?) rims on plagioclase. Thickness ranges from 1,800 feet (550 m) at the junction of Calusa Creek and Pine Creek in the northeast part of the map area (Campbell and Good, 1963) to 3,400 feet (1,035 m) for a nearby(?) section along Pine Creek (Shenon and McConnel, 1939). **Yb—Burke Formation (Middle Proterozoic)**—Pale green siltite, typically with macroscopic magnetite octahedra, in 10-20-cm thick beds. Darker green argillite partings. Includes flat-laminated, fine-grained, gray to white quartzite. Total thickness of partial sections in the Twin Crags area is about 3,000 feet (915 m; Campbell and Good, 1963). Clough (1981) reports a thickness of about 2,600 feet (800 m) at a location west of Silver Hill in the northeast part of map area. Yqrv—Quartzite of the Ravalli Group, undivided (Middle Proterozoic)—Fine- to medium-grained, commonly foliated to lineated micaceous to feldspathic quartzite with muscovitic parting spaced at 2-30 cm intervals. Garnets occur on some parting surfaces. Unit occurs within the southeastern metamorphic complex, but most or all is probably equivalent to the Burke and Revett formations. Mapped where metamorphic grade, deformation, or lack of exposure makes internal division difficult. **Yp—Prichard Formation, undivided (Middle Proterozoic)**—Gray, rusty-weathering siltite and minor quartzite. Minor discontinuous carbonate layers. Rare mudcracks. See Griggs (1973) or Cressman (1989) for more detail. Ypu—Prichard Formation, upper part (Middle Proterozoic)—Map unit of Griggs (1973) described as dark to medium gray, very thinly bedded argillite commonly interlaminated with light gray siltite and also containing some siltite beds. Grades upward into interbedded and interzoned argillite, siltite, and quartzite sequence. Griggs (1973) suggests a range in total thickness of 2,500 to 3,500 feet (760-1,070 m). **Ypl—Prichard Formation, lower part (Middle Proterozoic)**—Map unit of Griggs (1973) described as predominantly medium to light gray, thin- and regularly bedded siltite, and laminated in part; some argillite laminae and beds. Some beds or zones of gray to white quartzite have been subdivided locally (*Yqp* unit). Thickness 7,500+ feet (2,290+ m) according to Griggs (1973); base not exposed. Yqp—Quartzite of the Prichard Formation (Middle Proterozoic)—Nearly white to light gray impure to pure quartzite mapped by Hobbs and others (1965) in the northeast part of the area. Individual quartzite zones may be as much as 50 feet thick and are discontinuous. Contains about 5 percent plagioclase and no K-feldspar on the basis of two etched and stained samples. # BELT SUPERGROUP OR PRE-BELT METAMORPHIC ROCKS **Yq—Quartzite (Middle Proterozoic)**—Gray to dark gray, white to brown weathering, medium- to coarse-grained micaceous quartzite. Most is foliated, some highly lineated. Some has lighter (muscovitic) and darker (biotitic) layers 1-2 cm thick. Parting on micaceous layers 1 to 40 cm. Micaceous interlayers contain flattened and elongated garnet in highly lineated and sheared rocks. Ys—Schist (Middle Proterozoic)—Dark brown, muscovite-quartz, biotite-muscovite-quartz, and muscovite-biotite-feldspar-quartz schist. Includes some biotite quartzite and locally preserves compositional layering that reflects probable siltite-argillite protolith. Schistosity is locally axial planar to folds in compositional layering and is itself commonly folded and crenulated. Farthest southeast exposures are migmatitic and multiply deformed. Rarely contains garnet, but northeast of Grandmother Mountain, east of Clarkia, porphyroblasts are 1-2 cm in diameter and in close association with kyanite(?). Includes schists correlated with Prichard and St. Regis formations (Hietanen, 1967; Cockrum, 1986). YXs—Schist of the Priest River metamorphic complex (Proterozoic)—Fine-grained garnetiferous schist. Metaigneous rocks to the north and northwest within this complex have been dated at about 1580 Ma, indicating a pre-Belt age (Evans and Fischer, 1986; Armstrong and others, 1987). However, the unit may include younger overlying Belt rocks (Prichard?) as well. Mapped as Prichard Formation by Griggs (1973). YXq—Quartzite of the Priest River metamorphic complex (Proterozoic)—Strongly lineated and foliated light gray to white quartzite. Coarsely recrystallized and feldsparpoor (2 percent plagioclase). # STRUCTURE, TECTONICS, AND METAMORPHISM Relatively low-grade metasedimentary rocks of the Belt Supergroup underlie much of the St. Maries quadrangle (Figures 3 and 4), but high metamorphic grade (amphibolite facies) and highly strained rocks are present in its northwest and southeast corners. Exposure of the high-grade rocks has been attributed to unroofing of two metamorphic core complexes: the Priest River complex in the northwest and the Boehls Butte complex in the southeast (Rehrig and Reynolds, 1981; Seyfert, 1984; Sheriff and others, 1984; Figure 3. Regional geologic map of pre-Miocene rocks in northern Idaho and western Montana. Rehrig and others, 1987; Doughty and others, 1990, Doughty and Price, 1999). Both complexes have been considerably uplifted relative to the surrounding rocks, but the mechanics of this uplift are not well understood. While the Priest River complex may well represent a metamorphic core complex of the type described in Crittenden and others (1980), the bounding fault for the Boehls Butte complex appears to be steep, and we did not map it as a detachment fault. The central part of the St. Joe fault appears to connect the Priest River and Boehls Butte complexes and may have acted as a transform fault during uplift of the two areas. However, the St. Joe fault may have had an earlier history along its entire length. The following discussion explores the history of the area from oldest events to youngest. Little is known of the tectonic setting of the area during the Precambrian. Archean basement and younger (1576 Ma) augen gneiss have been recognized north of the area near Sandpoint (Clark, 1973; Evans and Fischer, 1986; Doughty and others, 1998). The Archean basement is overlain by high-grade metasedimentary rocks whose protolith may be the Belt Supergroup. Deposition of the lower and middle parts of the Belt Supergroup occurred from about 1470 to 1440 Ma (Anderson and Davis, 1995; Evans and others, 2000) and was probably controlled at least in part by block faulting. Winston (1986b) recognized significant thickness differences across an east-west line (Jocko line) coincident Figure 4. Simplified geologic map of pre-Miocene rocks in the St. Maries quadrangle. with the Osburn fault (Figure 3) and suggested it was a down-to-the-south growth fault during deposition of the Ravalli Group and Wallace Formation. The postulated growth fault may actually be slightly south of the Osburn fault in the western part of the Coeur d'Alene mining district because the section is thin as far south as Striped Peak (center column in Figure 5). The section thickens from Striped Peak south and west across the St. Maries quadrangle. Thickness does not appear to change across the St. Joe fault, but it is difficult to find comparable sections with which to document this. The East Kootenai orogeny at about 1300-1350 Ma affected rocks to the north in Canada (McMechan and Price, 1982) and may have affected rocks in the study area as well. The western part of the Belt basin is thought to have rifted away during the Late Proterozoic, perhaps forming part of eastern Australia (Ross and others, 1992; Doughty and others, 1998). The first recognized metamorphic-tectonic event appears related to contraction in the Cretaceous. This resulted in development of schistosity (S1), folds, including rarely seen isoclinal folds (F1), and some early (M1) metamorphic mineral assemblages (Hietanen, 1963a, 1963b, 1967; Lang and Rice, 1985a, 1985b; Carey and others, 1992; Grover and others, 1992). Large-scale northwest-trending folds in the less metamorphosed rocks (Figure 4) probably formed during this time. Open folds and poorly developed cleavage with inconsistent attitudes in the southwest part of the area indicate low strain there. Tighter folds with well-developed cleavage that dips steeply southwest in the northeast corner of the map indicate higher northeast-southwest shortening strain there. Contractional faults also formed in the northeast part of the area, and at the present level of exposure all of these faults are relatively steep (i.e., reverse faults). We believe these structures are related to regional thrusting in the Cretaceous and refer to them as thrust faults regardless of dip angle. Significant north-northeast-directed faulting Figure 5. Belt Supergroup stratigraphic sections for the St. Maries area, the southwest part of the Coeur d'Alene mining district (SW CDA district) and the area west of Missoula, Montana (Missoula West quad.). Thickness estimates for the Coeur d'Alene district are from Hobbs and others (1965), Griggs (1973), and Lewis and others (1999). Those for the Missoula West quadrangle are from Lewis (1998).
occurred along two of these faults (Big Creek and Striped Peak). Southward-verging small-scale parasitic folds common to the southeast part and an expanse of overturned strata just to the east (Reid and Greenwood, 1968; Reid and others 1981; Lewis and others, 1999) suggest that local southward-directed thrusting accompanied folding. The St. Joe fault may have been active as a south-directed thrust during this time and exposed older rocks on the north side of the fault. Postulated thrusting along a north-striking fault east of Santa is speculative, but helps explain the highly deformed rocks in this area. A strong, subhorizontal flattening fabric in the southeastern part of the area is especially well developed in the orthogneiss (Kog). It is cut by undeformed pegmatite- aplite bodies. If the orthogneiss is correlative with deformed hornblende-bearing tonalite in and around the Idaho batholith and if the crosscutting bodies are correlative with the undeformed main phase of the batholith, then this fabric was produced in the mid-Cretaceous, perhaps 90-72 Ma. The strain reflected in the flattening fabric is most easily attributed to Sevier-Laramide contraction. Alternatively, that fabric and the lineation-dominated fabric in overlying quartzite might result from extension, as Hodges and Walker (1992) suggested for other core complexes of the Cordillera after contractional thickening. Apparent static growth of M2 porphyroblasts (garnet and andalusite) must postdate this. A likely cause of M2 is regional heating by the later stages of the batholith (Lang and Rice, 1985a; Carey and others, 1992; Grover and others, 1992). After M2, the entire region was affected by extension during the Eocene (Harms and Price, 1992). The Coeur d'Alene-Purcell fault and White Rock fault were active, and they facilitated the uplift of the Priest River complex and the Boehls Butte complex. Movement on these two faults may have been accompanied by dextral motion along the central connecting part of the St. Joe fault. The Purcell-Coeur d'Alene fault on the east side of the Priest River complex is nowhere exposed; however, mineral lineations plunge 15-35°E east in the footwall of the fault along the west shore of Coeur d'Alene Lake, indicating that it may be a low-angle detachment fault as suggested by Rehrig and Reynolds (1981). Alternatively, the Coeur d'Alene-Purcell fault may be a normal fault that cuts an earlier mylonite zone (Doughty and Price, 1999). How much of the fabric in rocks east of the White Rock fault dates from Eocene deformation is uncertain. Garnets on foliation surfaces of some quartzite are elongated or smeared parallel to the lineation and perpendicular to extension joints. If these garnets are from M2, at least some of the lineation probably dates from the Eocene. These lineated rocks may be mylonites formed during unroofing of a core complex. Structurally lower schist and orthogneiss units in the southeast part of the area also are locally mylonitized. Kinematic sense from s-c relations is top-to-the-west relative motion consistent with the map sense of tectonic unroofing. East of the map area (near Monumental Buttes), top-to-the-east sense of motion marks the eastern side of the overall structure (Lewis and others, 1999). The contrast in metamorphic grade and lithology varies along the White Rock fault. The most striking contrast in grade is near the north end along Mica Creek, where the weakly metamorphosed upper Wallace Formation is faulted against mica schist and lineated quartzite. There, the garnet isograd is offset approximately 10 miles (16 km) along the White Rock fault (Hietanen, 1967). Although the metamorphic contrast across the White Rock fault decreases to the south, younger rocks (Wallace Formation) continue on the west side of the structure, indicating significant stratigraphic offset. Also exposed along Mica Creek west of mylonitized quartzite is brecciated quartzite, which resembles chlorite breccia found in other metamorphic core complexes in the western U.S. However, similar breccia was not found elsewhere along the fault. Lineations near the fault typically have shallow plunges, but the straight trace of the fault gives the appearance of a relatively steep dip. In this way the White Rock fault is similar to the Coeur d'Alene fault and may be a normal fault that cuts an earlier detachment fault. The presence of epidote-bearing orthogneiss (Kog) east of the White Rock fault, along with mineral compositions indicating pressures up to 11 kb (Grover and others, 1992), attest to the deep crustal levels now exposed at the surface. Uplift of these deep rocks may have been protracted. Postkinematic (M3) minerals include cordierite, corundum, and andalusite that formed at 4 to 6 kb (Grover and others, 1992). They probably formed during, or immediately before, Eocene uplift and unroofing, suggesting about half the uplift could have been in the Late Cretaceous. Early phases of uplift may have included strike-slip motion on the eastern part of the St. Joe fault from Calder east to the Roundtop pluton. There, a band of strongly lineated quartzite (L tectonite) within the Yqrv unit has shallow ESE- or WNWplunging lineation consistent with strike slip parallel to the direction of extension. This band is present along the southern part of the Herrick stock and is interrupted by the Eocene Round Top pluton (east of the map area). The Round Top pluton may fill a trans-tensional gap, but the lack of tectonic fabric in the pluton, except for its southern border, indicates that most strike-slip motion was over before its intrusion. This northern margin of the Boehls Butte uplift appears to expose a more intact stratigraphic section than does the western margin, perhaps because it is oriented parallel to the Eocene extensional direction. The trace of the St. Joe fault along the northern margin of the Boehls Butte complex was intruded by the Herrick stock. In general the stock is not deformed, but a subhorizontal flow(?) fabric is well developed in some places. Protomylonite was developed locally and is present along the upper part of Mud Cabin Creek. The Herrick stock intrudes the Wallace Formation on the north, perhaps as a sill, and apparently includes some subhorizontal metasedimentary screens as well. Lineated quartzitic metasediment (Yarv) with ESE-plunging lineation is present along the southern margin of the stock. These observations suggest that the stock intruded the WNW-trending boundary (St. Joe fault) that separates the Wallace Formation from more highly deformed Ravalli Group rocks after most of the deformation and juxtaposition. If the stock is Eocene, its composition suggests it is related to the earlier, intermediate phase of Challis magmatism. Juxtaposition of the more deformed rocks to the south with less deformed ones to the north must have predated that and could have been coincident with the formation of the L tectonite farther east. Although there is a contrast in fabric across the fault, stratigraphic offset is not great. Another structure that may have had Eocene motion is the Hoodoo fault, which offsets the garnet isograd in the south-central part of the map area. Dacite and rhyolite dikes related to the Eocene extensional event intruded NW- to NNW-trending faults both north and south of the St. Joe fault. Their orientation is consistent with right-lateral slip along the fault during WNW-ESE regional extension. Involvement of the rhyolite suggests that faulting persisted during the later phase of Challis magmatism. Associated with these is pervasive iron staining, brecciation, and argillic(?) or sericitic(?) alteration. The age and tectonic significance of NNW-striking mafic dikes in the Clarkia area (unit TKgb) are less clear. The orientation and relative freshness of these dikes suggests they may be related to the Columbia River Basalt Group, but the dikes differ chemically from the flows in the area, as discussed in the following section. These mafic dikes may instead be Eocene or Cretaceous in age. Flows of Miocene Columbia River basalt cover parts of many of the faults in the area and do not appear to have been offset. Recent dip-slip fault activity thus appears to have been minimal. Strike-slip motion on structures like the St. Joe fault is more difficult to discount, but no evidence of significant post-Middle Miocene offset has been found. ## **GEOCHEMISTRY** Over 100 samples from the St. Maries 30' x 60' quadrangle and an additional 13 samples from the Wallace 30' x 60' quadrangle were analyzed for major and trace element concentrations at Washington State University as part of this study. Major elements and selected trace elements were determined for all samples by X-ray fluorescence (XRF) methods. Sixteen samples of metasedimentary rocks were analyzed for additional trace elements, including rareearth elements, using inductively coupled plasma mass spectroscopy (ICP-MS). Results for igneous intrusive rocks are presented in Table 1; those for metasedimentary rocks are listed in Table 2 (XRF) and Table 3 (ICP-MS), and those for basalts are listed in Table 4. Locations for samples in the St. Maries quadrangle are shown on the map. Latitude and longitude are listed in the tables for all samples, including those outside the map area in the Wallace quadrangle. Chemical compositions of argillite-siltite from different formations of the Belt Supergroup were found to largely overlap; these results are consistent with those of previous workers (e.g., Harrison and Grimes, 1970; Harrison and Hamilton, 1971). One exception is Sr content. Average Sr concentrations are higher in noncarbonate rocks of the Prichard Formation than those of other formations, a feature previously recognized by Jack Harrison (written commun., 1992). However, Sr is apparently mobilized during metamorphism and can be found in elevated amounts in more schistose rocks. Concentrations of K₂O are highest in the argillite,
as expected, but quartzite of the Revett and Striped Peak formations contain significant potassium (1.46-2.01 percent K_2O) given the high SiO_2 contents of these rocks. Six orthogneiss samples (Kog) were found to have a wide compositional range (Table 1). SiO_2 ranges from 57 to 74 percent, and K_2O from 0.75 to 4.25 percent. One sample from Marble Creek (98TF819) with low Al_2O_3 , Na_2O_3 , and Sr concentrations was mapped as Kog, but in some respects resembles feldspathic quartzite. The unusual chemical composition is perhaps the result of intense deformation and elemental mobilization of an original granitic body. Seven amphibolite samples are more uniform in composition (SiO_2 range of 49-52 percent). The three samples of Tgd from the Merton Creek and Herrick stocks are also similar chemically, but the Herrick stock contains more mafic lithologies that were not sampled. A biotite lamprophyre from the dump at the Palisade mine has an elevated K_2O content (6.15 percent), as expected. All analyses of Columbia River basalt (Table 4) match well with previously published results (Swanson and others, 1979b; Wright and others, 1973, 1979, 1980). Significant differences exist in both major- and trace-element contents of the different units, but variation within a unit is minimal. For example, Tgn2 flows are higher in CaO and MgO and lower in TiO_2 than Tgr_2 flows, but TiO_2 only ranges from 1.86 to 1.94 percent in six samples of Tgn_2 . One important result was from sample BRETC collected on Titley Creek east of Clarkia. This sample of Priest Rapids basalt has Lolo chemical type (Wright and others, 1973; Swanson and others, 1979b) in contrast to the Rosalia chemical type present in the St. Maries, Worley, and Harrison areas. This confirms the Lolo type chemistry of sample 78-122 (Wright and others, 1980) collected at the mouth of Emerald Creek. A map showing the two chemical types of the Priest Rapids in the St. Maries quadrangle could be produced with additional sampling. Two pyroxene gabbro samples (98RB004 and 98SC001) and one diabase sample (GC) from near Clarkia were sampled to check if they represented intrusive equivalents of the Columbia River Basalt Group. The pyroxene gabbro most resembles Priest Rapids flows with Lolo chemical type (such as sample BRETC), but the gabbro has lower P_2O_5 and Ba concentrations and higher Cu concentrations. Although the diabase dike has major- and trace-element concentrations somewhat similar to the basalt of Dodge (Ted), The TiO₂ Ni, Cr, Ba, and Sr concentrations are higher than any known Ted flow in the area. It seems unlikely that these gabbro and diabase dikes represent feeders to the Columbia River basalts. ### ACKNOWLEDGMENTS Field assistants Shari Christofferson and Kurt Steffen provided capable and cheerful help. Don Winston provided enthusiastic support for the mapping and shared his extensive knowledge of the Belt Supergroup. We are grateful for the hospitality of the U.S. Forest Service personnel during our stay at the Clarkia Work Center. Don Swanson of the U.S. Geological Survey kindly provided unpublished field maps of the area. Art Bookstrom, Steve Box, Roy Breckenridge, and Kurt Othberg contributed constructive and greatly appreciated technical reviews. Mapping and compilation were completed under contract with the U.S. Geological Survey office in Spokane, Washington. Basalt analyses in the Coeur d'Alene Lake area were obtained in cooperation with a U.S. Geological Survey STATEMAP project. Potlatch Corporation provided partial funding for digitizing the map. ### REFERENCES - Anderson, A.L., 1940, Geology and metalliferous deposits of Kootenai County, Idaho: Idaho Bureau of Mines and Geology Pamphlet 53, 67 p. - Anderson, H.E., and D.W. Davis, 1995, U-Pb geochronology of the Moyie sills, Purcell Supergroup, southeastern British Columbia: Implications for the Mesoproterozoic geological history of the Purcell (Belt) basin: Canadian Journal of Earth Sciences, v. 32, no. 8, p. 1180-1193. - Appelgate, L.M., 1982, Unpublished geologic map of the Latour Peak area, Idaho, completed for the Cabinet Mountains Reconnaissance Program, ASARCO Northwest Exploration Division, Spokane, Washington: map on file at Idaho Geological Survey, Moscow, Idaho, scale 1:48,000. - Armstrong, R.L., R.R. Parrish, Peter van der Heyden, S.J. Reynolds, and W.A. Rehrig, 1987, Rb-Sr and U-Pb geochronometry of the Priest River metamorphic complex-Precambrian X basement and its Mesozoic-Cenozoic plutonic-metamorphic overprint, northeastern Washington and northern Idaho, *in* J.E. Schuster, ed., Selected Papers on the Geology of Washington: Washington Division of Geology and Earth Resources Bulletin, v. 77, p. 15-40. - Bookstrom, A.A., S.E. Box, B.L. Jackson, T.R. Brandt, P.D. Derkey, and S.R. Munts, 1999, Digital map of surficial geology, wetlands, and deepwater habitats, Coeur d'Alene River valley, Idaho: U.S. Geological Survey Open-File Report 99-548. - Breckenridge, R.M., and K.L. Othberg, 1999, Unpublished geologic map of the southern end of Coeur d'Alene Lake: Idaho Geological Survey. - Bush, J.H., K.L. Othberg, and K.L. Priebe, 1995, Onaway Member, intracanyon Columbia River basalt (CRB) flows, Latah County, Idaho: Geological Society of America Abstracts with Programs, v. 27, no. 4, p. 5. - Camp, V.E., 1981, Geologic studies of the Columbia Plateau: Part II, upper Miocene basalt distribution reflecting source locations, tectonism, and drainage history in the Clearwater - embayment, Idaho: Geological Society of America Bulletin, v. 92, p. 669-678. - Campbell, A.B., and S.E. Good, 1963, Geology and mineral deposits of the Twin Crags quadrangle, Idaho: U.S. Geological Survey Bulletin 1142-A, 33 p., scale 1:24,000. - Carey, J.W., J.M. Rice, and T.W. Grover, 1992, Petrology of aluminous schist in the Boehls Butte region of northern Idaho: Geologic history and aluminum-silicate phase relations: American Journal of Science, v. 292, p. 455-473. - Clark, A.L., 1963, Geology of the Clarkia area, Idaho: University of Idaho M.S. thesis, 57 p. - Clark, S.H.B., 1973, Interpretation of a high-grade Precambrian terrane in northern Idaho: Geological Society of America Bulletin, v. 84, no. 6, p. 1999-2003. - Clough, A.H., 1981, Geology of the NE ¼ of the Calder 15' quadrangle, Shoshone County, Idaho: University of Idaho M.S. thesis, 105 p., scale 1:24,000. - Cockrum, D.A., 1986, Lithostratigraphy of the Prichard Formation, and geology of the Marble Mountain quadrangle, Shoshone County, Idaho: University of Idaho M.S. thesis, 216 p. - Cressman, E.R., 1989, Reconnaissance stratigraphy of the Prichard Formation (Middle Proterozoic) and the early development of the Belt Basin, Washington, Idaho, and Montana: U.S. Geological Survey Professional Paper 1490, 80 p. - Crittenden, M.D., Jr., P.J. Coney, and G.H. Davis, eds., 1980, Cordilleran Metamorphic Core Complexes: Geological Society of America Memoir 153, 490 p. - Cunningham, Cynthia, 1985, Unpublished geologic map of the Mizpah mine area completed for Tenneco Minerals, Lakewood, Colorado: map on file at the Idaho Geological Survey, Moscow, scale 1:12,000. - Doughty, P.T., and R.A. Price, 1999, Tectonic evolution of the Priest River complex, northern Idaho and Washington: A reappraisal of the Newport fault with new insights on metamorphic core complex formation: Tectonics, v. 18, no. 3, p. 375-393. - Doughty, P.T., S.D. Sheriff, and J.W. Sears, 1990, Accommodation of en echelon extension by clockwise rotation of the Sapphire tectonic block, western Montana and Idaho, *in* F.J. Moye, ed., Geology and Ore Deposits of the Trans-Challis Fault System/Great Falls Tectonic Zone: Guidebook of the Fifteenth Annual Tobacco Root Geological Field Conference, p. 89-92. - Doughty, P.T., R.A. Price, and R.R. Parrish, 1998, Geology and U-Pb geochronology of Archean basement and Proterozoic cover in the Priest River complex, northwestern United States, and their implications for Cordilleran structure and Precambrian continent reconstructions: Canadian Journal of Earth Science, v. 35, p. 39-54. - Duncan, C.H., 1998, Geology of the Potlatch and Palouse 7.5-minute quadrangles, Idaho and Washington: University of Idaho M.S. thesis, 98 p. - Evans, K.V., J.N. Aleinikoff, J.D. Obradovich, and C.M. Fanning, 2000, SHRIMP U-Pb geochronology of volcanic rocks, Belt Supergroup, western Montana; evidence for rapid deposition of sedimentary strata: Canadian Journal of Earth Sciences, v. 37, no. 9, p. 1287-1300. - Evans, K.V., and L.B. Fischer, 1986, U-Pb geochronology of two augen gneiss terranes, Idaho, and new data and tectonic implications: Canadian Journal of Earth Sciences, v. 23, no. - 12, p. 1919-1927. - Griggs, A.B., 1973, Geologic map of the Spokane quadrangle, Washington, Idaho, and Montana: U.S. Geological Survey Miscellaneous Investigations Series I-0768, scale 1:250,000. - Griggs, A.B., Unpublished geologic maps of the Calder, Emida, Fernwood, Plummer, St. Joe, St. Maries, and Tensed 15 minute quadrangles, Idaho, used by Griggs for his 1973 published map: U.S. Geological Survey Field Records Library, Denver, Colorado, scale 1:62,500. - Grover, T.W., J.M. Rice, and J.W. Carey, 1992, Petrology of aluminous schist in the Boehls Butte region of northern Idaho: Phase equilibria and P-T evolution: American Journal of Science, v. 292, p. 474-507. - Harms, T.A., and R.A. Price, 1992, The Newport fault: Eocene listric normal faulting, mylonitization, and crustal extension in northeast Washington and northwest Idaho: Geological Society of America Bulletin, v. 104, p. 745-761. - Harrison, J.E., Unpublished geologic mapping in the Merry Creek, Marble Mountain, and Huckleberry Mountain 7.5 minute quadrangles, Idaho: U.S. Geological Survey Field Records Library, Denver, Colorado, scale 1:24,000. - Harrison, J.E., A.B. Griggs, and J.D. Wells, 1986, Geologic and structure maps of the Wallace 1° X 2° quadrangle, Montana and Idaho: U.S. Geological Survey
Miscellaneous Investigations Series Map I-1509-A, scale 1:250,000. - Harrison, J.E., and D.J. Grimes, 1970, Mineralogy and geochemistry of some Belt rocks, Montana and Idaho: U.S. Geological Survey Bulletin 1312-O, 49 p. - Harrison, J.E., and J.C. Hamilton, 1971, Minor-element changes in pelitic Belt rocks caused by metamorphism in the Pend Oreille area, Idaho-Montana: U.S. Geological Survey Professional Paper 750-B, p. 82-91. - Harrison, J.E., and D.A. Jobin, 1963, Geology of the Clark Fork quadrangle, Idaho-Montana: U. S. Geological Survey Bulletin 1141-K, 38 p. - Hayden, T.J., 1992, Geology of the NW ¹/₄ of the Calder 15' quadrangle and SW ¹/₄ Kellogg 15' quadrangle, Idaho: University of Idaho Ph.D. thesis, 191 p., scale 1:24,000. - Hietanen, Anna, 1963a, Metamorphism of the Belt series in the Elk River-Clarkia area, Idaho: U.S. Geological Survey Professional Paper 344-C, 49 p., scale 1:48,000. - Hietanen, Anna, 1963b, Anorthosite and associated rocks in the Boehls Butte quadrangle and vicinity, Idaho: U.S. Geological Survey Professional Paper 344-B, 78 p., scale 1:48,000. - Hietanen, Anna, 1967, Scapolite in the Belt Series in the St. Joe-Clearwater region, Idaho: Geological Society of America Special Paper 86, 56 p. - Hobbs, S.W., A.B. Griggs, R.E. Wallace, and A.B. Campbell, 1965, Geology of the Coeur d'Alene district, Shoshone County, Idaho: U.S. Geological Survey Professional Paper 478, 139 p., scale 1:24,000. - Hodges, K.V., and J.D. Walker, 1992, Extension in the Cretaceous Sevier orogen, North American Cordillera: Geological Society of America Bulletin, v. 104, no. 5, p. 560-569. - Holland, J.S., 1947, Petrography and petrology of the igneous rocks of the Avery district, Shoshone County, Idaho: University of Idaho M.S. thesis, 39 p. - Jenks, M.D., 1998, Unpublished parent material maps of Potlatch Corporation land holdings: Idaho Department of Lands, Coeur d'Alene, scale 1:15,840. - Ko, C.A., A.C. Mueller, J.W. Crosby, and J.F. Orsborn, 1974, Preliminary investigation of the water resources of the - Hangman Creek drainage basin: Washington State University College of Engineering Research Division Report No. 74/15-81, 133 p. - Lang, H.M., and J.M. Rice, 1985a, Metamorphism of pelitic rocks in the Snow Peak area, northern Idaho, sequence of events and regional implications: Geological Society of America Bulletin, v. 96, no. 6, p. 731-736. - America Bulletin, v. 96, no. 6, p. 731-736. Lang, H.M., and J.M. Rice, 1985b, Geothermometry, geobarometry and T-X(Fe-Mg) relations in metapelites, Snow Peak, northern Idaho: Journal of Petrology, v. 26, no. 4, p. 889-924. - Lemoine, S.R., and Don Winston, 1986, Correlation of the Snowslip and Shepard formations of the Cabinet Mountains with upper Wallace rocks of the Coeur d'Alene Mountains, western Montana, *in* S.M. Roberts, ed., Belt Supergroup: A Guide to Proterozoic Rocks of Western Montana and Adjacent Areas: Montana Bureau of Mines and Geology Special Publication 94, p. 161-168. - Lewis, R.S., 1998, Geologic map of the Montana part of the Missoula West 30' x 60' quadrangle: Montana Bureau of Mines and Geology Open-File Report MBMG 373, scale 1:100,000. - Lewis, R.S., R.F. Burmester, M.D. McFaddan, P.D. Derkey, and J.R. Oblad, 1999, Digital geologic map of the Wallace 1:100,000 quadrangle, Idaho: U.S. Geological Survey Open-File Report 99-390. - Marvin, R.F., R.E. Zartman, J.D. Obradovich, and J.E. Harrison, 1984, Geochronometric and lead isotope data on samples from the Wallace 1° by 2° quadrangle, Montana and Idaho: U.S. Geological Survey Miscellaneous Field Studies Map MF-1354-G, scale 1:250,000. - McMechan, M.E., and R.A. Price, 1982, Superimposed lowgrade metamorphism in the Mount Fisher area, southeastern British Columbia: Implications for the East Kootenay Orogeny: Canadian Journal of Earth Sciences, v. 19, p. 476-489 - Mora, C.I., and J.W. Valley, 1989, Halogen-rich scapolite and biotite: Implications for metamorphic fluid-rock interaction: American Mineralogist, v. 74, p. 721-737. - Nelson, W.H., and J.P. Dobell, 1961, Geology of the Bonner quadrangle, Montana: U.S. Geological Survey Bulletin 111-F, p. 189-235. - Pardee, J.T., 1911, Geology and mineralization of the upper St. Joe River basin, Idaho: U.S. Geological Survey Bulletin 470, p. 39-61, scale 1:250,000. - Ransome, F.L., and F.C. Calkins, 1908, The geology and ore deposits of the Coeur d'Alene district, Idaho: U.S. Geological Survey Professional Paper 62, 203 p., scale 1:62,500. - Rehrig, W.A., and S.J. Reynolds, 1981, Eocene metamorphic core complex tectonics near the Lewis and Clark zone, western Montana and northern Idaho: Geological Society of America Abstracts with Programs, v. 13, no. 2, p. 102. - Rehrig, W.A., S.J. Reynolds, and R.L. Armstrong, 1987, A tectonic and geochronologic overview of the Priest River crystalline complex, northeastern Washington and northern Idaho, *in* J.E. Schuster, ed., Selected Papers on the Geology of Washington: Washington Department of Natural Resources, Division of Geology and Earth Resources, Bulletin 77 p. 1-14. - Reid, R.R., and W.R. Greenwood, 1968, Multiple deformation and associated progressive polymetamorphism in the Beltian rocks north of the Idaho batholith: XXII International - Geologic Congress, v. 4, p. 75-87. - Reid, R.R., W.R. Greenwood, and G.L. Nord, Jr., 1981, Metamorphic petrology and structure of the St. Joe area, Idaho: Geological Society of America Bulletin, v. 92, no. 2, part II, p. 94-205 (microfilm). - Rember, W.C., 1991, Stratigraphy and paleobotany of Miocene lake sediments near Clarkia, Idaho: University of Idaho Ph.D. thesis, 180 p. - Ross, G.M., R.R. Parrish, and Don Winston, 1992, Provenance and U-Pb geochronology of the Mesoproterozoic Belt Supergroup (northwestern United States): Implications for age of deposition and pre-Panthalassa plate reconstructions: Earth and Planetary Science Letters, v. 113, p. 57-76. - Savage, C.N., 1973, Trip no. 3, A geological field trip in Benewah and Whitman counties, Idaho and Washington, respectively: Idaho Bureau of Mines and Geology, Belt Symposium 1973, Volume I p. 253-320. - Savage, C.N., Unpublished geologic mapping of Benewah County, Idaho, within the Emida, Fernwood, Plummer, St. Joe, St. Maries, and Tensed 15 minute quadrangles, Idaho: Idaho Geological Survey files, scale 1:62,500. - Seyfert, C.K., 1984, The Clearwater core complex, a new Cordilleran metamorphic core complex, and its relation to a major continental transform fault: Geological Society of America Abstracts with Programs, v. 16, no. 6, p. 651. - Shenon, P.J., and R.H. McConnel, 1939, The silver belt of the Coeur d'Alene district, Idaho: Idaho Bureau of Mines and Geology Pamphlet 50, 8 p. - Sheriff, S.D., J.W. Sears, and J.N. Moore, 1984, Montana's Lewis and Clark fault zone: An intracratonic transform fault system: Geological Society of America Abstracts with Programs, v. 16, no. 6, p. 653-654. - Simpson, Carol, and S.M. Schmid, 1983, An evaluation of criteria to deduce the sense of movement in sheared rocks: Geological Society of America Bulletin, v. 94, p. 1281-1288. - Smiley, C.J., and W.C. Rember, 1979, Guidebook and road log to the St. Maries River (Clarkia) fossil area of northern Idaho: Idaho Bureau of Mines and Geology Information Circular 33, 27 p. - Swanson, D.A., J.E. Anderson, R.D. Bentley, G.R. Byerly, V.E. Camp, J.N. Gardner, and T.L. Wright, 1979a, Reconnaissance geologic map of the Columbia River Basalt Group in eastern Washington and northern Idaho, Spokane 1° x 2° quadrangle: U.S. Geological Survey Open-File Report 79-1363, sheet 5 of 12, scale 1:250,000. - Swanson, D.A., T.L. Wright, P.R. Hooper, and R.D. Bentley, 1979b, Revisions in stratigraphic nomenclature of the Columbia River Basalt Group: U.S. Geological Survey Bulletin 1457-G, 59 p. - Toth, M.I., and J.S. Stacey, 1992, Constraints on the formation of the Bitterroot lobe of the Idaho batholith, Idaho and Montana, from U-Pb zircon geochronology and feldspar Pb isotopic data: U.S. Geological Survey Bulletin 2008, 14 p. - isotopic data: U.S. Geological Survey Bulletin 2008, 14 p. Umpleby, J.B., and E.L. Jones, Jr., 1923, Geology and ore deposits of Shoshone County, Idaho: U.S. Geological Survey Bulletin 732, 156 p., scale 1:250,000. - Vance, R.B., 1981, Geology of the NW ¹/₄ of the Wallace 15' quadrangle, Shoshone County, Idaho: University of Idaho M.S. thesis, 103 p., scale 1:24,000. Wagner, W.R., 1949, The geology of part of the south slope of the St. Joe Mountains, Shoshone County, Idaho: Idaho Bureau of Mines and Geology Pamphlet 82, 48 p., scale 1:100,000 (approx.). - Winston, Don, 1986a, Sedimentology of the Ravalli Group, middle Belt carbonate, and Missoula Group, Middle Proterozoic Belt Supergroup, Montana, Idaho and Washington, in S.M. Roberts, ed., Belt Supergroup: A Guide to Proterozoic Rocks of Western Montana and Adjacent Areas: Montana Bureau of Mines and Geology Special Publication 94, p. 85-124. - Winston, Don, 1986b, Sedimentation and tectonics of Middle Proterozoic Belt Basin and their influence on Cretaceous compression and Tertiary extension in western Montana and northern Idaho, *in* J.A. Peterson, ed., Paleotectonics and Sedimentation in the Rocky Mountains: American Association of Petroleum Geologists Memoir 41, p. 87-118. - Wright, T.L., K.N. Black, D.A. Swanson, and Tim O'Hearn, 1980, Columbia River basalt: 1978-1979 sample data and chemical analyses: U.S. Geological Survey Open-File Report 80-921, 99 p. - Wright, T.L., M.J. Grolier, and D.A. Swanson, 1973, Chemical variation related to the stratigraphy of the Columbia River basalt: Geological Society of America Bulletin, v. 84, p. 371-386. - Wright, T.L., D.A. Swanson, R.T. Helz, and G.R. Byerly, 1979, Major oxide, trace element, and glass chemistry of Columbia River basalt samples collected between 1971 and 1977: U.S. Geological Survey Open-File Report 79-711, 146 p. # Appendix Table 1. XRF analyses of intrusive rocks from the St. Maries 30' x 60' quadrangle.
Samples without map numbers are from east of the area in the Wallace quadrangle. | Map no.
Sample no. | 1
98TF812 | 2
98TF814 | 3
98TF816 | 4
98TF833 | 98TF848 | 5
98TF819 | 6
98TF811 | 6
98TF811R | |---------------------------------|------------------------------|--------------------------------|---------------------------------------|--------------------------------|--------------------------------|---------------------------------------|---------------------------|----------------------| | Mineralogy
Lithology
Form | biotite-
tonalite
sill | biotite
orthogneiss
sill | garnet-biotite
orthogneiss
sill | biotite
orthogneiss
sill | epidote
orthogneiss
sill | biotite-quartz
orthogneiss
sill | amphibolite
sill | duplicate | | 30' x 60' quad.
7.5' quad. | St. Maries
Marble Mtn. | St. Maries
Marble Mtn. | St. Maries
Marble Mtn. | St. Maries
Marble Mtn. | Wallace
Widow Mtn. | St. Maries
Marble Mtn. | St. Maries
Marble Mtn. | | | Unit
Lat. | Kog
47.12923 | Kog
47.13051 | Kog
47.17811 | Kog
47.17492 | Kog
47.04467 | Kog?
47.20778 | KYam
47.12444 | KYam | | Lat.
Long. | -116.09709 | -116.08063 | -116.09517 | -116.09868 | -115.94944 | -116.04411 | -116.09583 | | | | | | Unnorma | alized results (w | reight %) | | | | | SiO ₂ | 56.79 | 73.96 | 67.36 | 72.44 | 67.40 | 73.24 | 52.04 | 51.50 | | Al_2O_3 | 20.17 | 14.60 | 15.63 | 14.26 | 15.59 | 12.37 | 14.42 | 14.18 | | TiO ₂ | 0.666 | 0.135 | 0.612 | 0.300 | 0.454 | 0.377 | 0.762 | 0.756 | | FeO* | 6.12
0.093 | 1.13
0.016 | 3.73
0.062 | 1.89
0.025 | 3.84
0.061 | 3.61
0.116 | 9.76
0.155 | 10.00
0.154 | | MnO
CaO | 6.62 | 2.74 | 2.63 | 1.87 | 3.43 | 2.23 | 11.27 | 11.14 | | MgO | 3.01 | 0.71 | 1.50 | 0.68 | 2.09 | 2.28 | 7.70 | 7.51 | | K ₂ O | 1.85 | 0.75 | 2.85 | 4.25 | 2.91 | 2.09 | 0.53 | 0.53 | | Na ₂ O | 4.45 | 5.00 | 4.53 | 3.31 | 3.45 | 2.80 | 2.32 | 2.30 | | P_2O_5 | 0.253 | 0.005 | 0.191 | 0.079 | 0.138 | 0.092 | 0.050 | 0.051 | | LOI | 0.47 | 0.36 | 0.64 | 0.72 | 1.18 | 1.28 | 0.83 | 0.83 | | Total | 100.49 | 99.41 | 99.73 | 99.83 | 100.54 | 100.49 | 99.84 | 98.95 | | | | | Normali | ized results (we | ight %) | | | | | SiO ₂ | 56.78 | 74.67 | 67.98 | 73.09 | 67.83 | 73.83 | 52.56 | 52.49 | | Al_2O_3 | 20.17 | 14.74 | 15.77 | 14.39 | 15.69 | 12.47 | 14.56 | 14.45 | | TiO ₂ | 0.666 | 0.136 | 0.618 | 0.303 | 0.457 | 0.380 | 0.770 | 0.771 | | FeO* | 6.11 | 1.14 | 3.76 | 1.91 | 3.86 | 3.64 | 9.86 | 10.19 | | MnO | 0.093 | 0.016 | 0.063 | 0.025 | 0.061 | 0.117 | 0.157 | 0.157 | | CaO
MgO | 6.62
3.01 | 2.77
0.72 | 2.65
1.51 | 1.89
0.69 | 3.45
2.10 | 2.25
2.30 | 11.38
7.78 | 11.35
7.65 | | K ₂ O | 1.85 | 0.72 | 2.88 | 4.29 | 2.10 | 2.11 | 0.54 | 0.54 | | Na ₂ O | 4.45 | 5.05 | 4.57 | 3.34 | 3.47 | 2.82 | 2.34 | 2.34 | | P_2O_5 | 0.253 | 0.005 | 0.193 | 0.080 | 0.139 | 0.093 | 0.051 | 0.052 | | | | | Tra | ice elements (pp | om) | | | | | Ni | 7 | 6 | 11 | 7 | 15 | 19 | 77 | 75 | | Cr | 6 | 2 | 16 | 10 | 40 | 40 | 152 | 146 | | Sc | 11 | 6 | 7 | 7 | 13 | 6 | 48 | 43 | | \mathbf{V} | 87 | 26 | 43 | 27 | 65 | 45 | 296 | 288 | | Ba | 1282 | 289 | 909 | 1350 | 976 | 379 | 112 | 104 | | Rb | 31 | 18 | 53 | 67 | 86 | 87 | 14 | 13 | | Sr
Zr | 1112
83 | 264
169 | 329
279 | 303
130 | 509
165 | 123
196 | 177
81 | 179
77 | | Y | 12 | 13 | 15 | 8 | 16 | 11 | 19 | 18 | | Nb | 6.4 | 4.1 | 18.1 | 10.0 | 8.5 | 10.1 | 5.5 | 5.0 | | Ga | 20 | 13 | 19 | 17 | 18 | 16 | 17 | 16 | | Cu | 19 | 0 | 4 | 0 | 3 | 2 | 10 | 12 | | Zn | 73 | 10 | 54 | 31 | 50 | 33 | 76 | 75 | | Pb | 12 | 12 | 9 | 16 | 18 | 7 | 8 | 4 | | La | 24 | 52 | 55 | 22 | 38 | 24 | 5 | 12 | | Ce
Th | 45
6 | 63
16 | 91
0 | 47
7 | 62
3 | 44
21 | 29
0 | 18
0 | | | Ü | 10 | U | , | 5 | <i>L</i> 1 | U | U | Major elements normalized on a volatile-free basis; FeO is total Fe expressed as FeO; LOI is loss on ignition. [&]quot;R" at end of sample number denotes a duplicate bead made from the same rock powder. [&]quot;†" denotes values > 120% of highest standard in lab. Table 1. XRF analyses of intrusive rocks from the St. Maries and Wallace quadrangles (continued). | Map no. Sample no. Mineralogy Lithology Form 30' x 60' quad. 7.5' quad. Unit Lat. Long. | 6
98TF811AV
average
KYam | 7
98TF827
amphibolite
sill
St. Maries
Grandmother
KYam
47.09400
-116.11214 | 8
98TF838
basalt
sill
St. Maries
Marble Mtn.
47.23742
-116.02164 | 98TF849
garnet
amphibolite
sill
Wallace
Widow Mtn.
KYam
47.04167
-115.94111 | 9
98RL004
granodiorite
stock
St. Maries
Marble Cr.
Tgd
47.29295
-116.08594 | 98RL069
biotite
granodiorite
stock
St. Maries
Santa
Tgd
47.23580
-116.42222 | 98RL075
biotite
granodiorite
stock
St. Maries
St. Joe Baldy
Tgd
47.31841
-116.44815 | 98TF840
hornblende-
granodiorite
stock
St. Maries
Marble Cr.
Tgd
47.25783
-116.05060 | |--|---|---|---|--|--|--|---|--| | | | | Unnorma | alized results (w | eight %) | | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ LOI Total | 51.77
14.30
0.759
9.88
0.155
11.21
7.61
0.53
2.31
0.051
0.83
99.40 | 49.52
12.32
3.214
16.47
0.257
9.67
5.06
0.39
0.94
0.309
1.03
99.18 | 49.75 12.61 2.790 15.32 0.253 9.05 5.21 0.91 1.90 0.307 98.10 Normal | 49.95 12.93 1.764 12.82 0.224 10.75 6.59 0.54 1.97 0.156 0.61 98.31 ized results (we | 69.55
16.06
0.325
2.31
0.052
2.75
0.90
3.11
4.26
0.133
1.08
100.53
ight %) | 69.62
15.53
0.260
2.08
0.035
2.09
0.71
4.06
4.09
0.104
0.35
98.93 | 69.05
15.83
0.300
2.33
0.036
2.45
0.97
3.58
4.22
0.126
0.44
99.33 | 70.23
15.29
0.272
1.92
0.021
2.65
0.77
3.43
4.15
0.119
2.26
101.12 | | Al ₂ O ₃
TiO ₂
FeO*
MnO
CaO
MgO
K ₂ O
Na ₂ O
P ₂ O ₅ | 14.51
0.770
10.02
0.157
11.37
7.72
0.54
2.34
0.051 | 12.55
3.275
†16.78
†0.26
9.85
5.16
0.40
0.96
0.315 | 2.844
†15.61
†0.26
9.23
5.31
0.93
1.94
0.313 | 1.806
13.12
0.229
11.00
6.75
0.55
2.02
0.160 | 0.327
2.33
0.052
2.77
0.90
3.13
4.28
0.134 | 0.264
2.11
0.036
2.12
0.72
4.12
4.15
0.106 | 0.303
2.35
0.036
2.48
0.98
3.62
4.27
0.127 | 13.47
0.275
1.94
0.021
2.68
0.78
3.47
4.20
0.120 | | | | | Tra | ice elements (pp | om) | | | | | Ni Cr Sc V Ba Rb Sr Zr Y Nb Ga Cu Zn Pb La Ce | 76 149 46 292 108 14 178 79 19 5 17 11 76 6 9 24 0 | 42
69
50
453
13
4
90
216
46
23.0
21
162
135
9
10
49
2 | 124
67
41
396
299
33
210
209
44
22.3
24
†3094
210
2
20
63
2 | 61
95
45
373
77
16
177
123
27
12.1
19
58
96
6
2
17
0 | 5
4
5
28
1200
55
526
129
10
12.9
18
0
36
19
38
54 | 1
2
2
20
1376
68
423
128
9
11.4
16
0
23
23
23
33
42
4 | 3
5
0
21
1059
81
467
117
11
12.9
17
0
17
20
26
28
3 | 3
2
1
20
1868
46
491
141
7
8.9
13
4
7
12
117
180
9 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO; LOI is loss on ignition. "R" at end of sample number denotes a duplicate bead made from the same rock powder. [&]quot;†" denotes values > 120% of highest standard in lab. Table 1. XRF analyses of intrusive rocks from the St. Maries and Wallace quadrangles (continued). | Map no. Sample no. Mineralogy Lithology Form 30' x 60' quad. 7.5' quad. Unit Lat. Long. | 98RB004
gabbro
dike
St. Maries
Clarkia
TKgb
47.06888
-116.26354 | 98SC001 gabbro dike St. Maries Clarkia TKgb 47.08994 -116.30810 | 15
BREGC
diabase
dike
St. Maries
Merry Cr.
TKdd
47.00479
-116.16879 | 98RL027
biotite
lamprophyre
dike
St. Maries
Twin Crags
TK1
47.43469
-116.35141 | 98RL011
rhyolite
dike
St. Maries
St. Maries
Tr
47.34009
-116.50733 | 98TF846
biotite
anorthosite
pluton
Wallace
Widow Mtn.
Yan
47.04425
-115.92067 | |--|---|---
--|---|--|---| | | | Unnorma | lized results (w | eignt %) | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ LOI | 49.60
12.67
3.373
15.04
0.225
9.50
5.16
0.81
2.29
0.239
-0.72 | 48.84
12.27
3.317
15.63
0.222
9.36
4.82
1.31
2.10
0.328
0.10 | 51.48
15.58
2.177
8.11
0.128
7.18
7.80
1.54
3.57
0.412 | 52.21
14.43
1.308
6.81
0.110
7.36
6.49
6.15
2.17
1.184
5.42 | 75.50
14.25
0.008
0.72
0.091
0.64
0.14
3.83
4.41
0.046
1.26 | 53.04
26.37
0.205
2.47
0.043
11.22
1.31
0.25
4.71
0.027
1.98 | | Total | 98.18 | 98.29 | 97.98 | 103.65 | 100.89 | 101.63 | | | | Normali | zed results (we | ight %) | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ | 50.15
12.81
†3.41
†15.20
0.227
9.61
5.22
0.82
2.32
0.242 | 49.74
12.50
†3.38
†15.92
0.226
9.53
4.91
1.33
2.14
0.334 | 52.54
15.90
2.222
8.28
0.131
7.33
7.96
1.57
3.64
0.421 | 53.15
14.69
1.332
6.94
0.112
7.49
6.61
6.26
2.21
†1.21 | 75.78
14.30
0.008
0.72
0.091
0.64
0.14
3.84
4.43
0.046 | 53.23
†26.46
0.206
2.48
0.043
11.26
1.31
0.25
4.73
0.027 | | | | Tra | ce elements (pp | om) | | | | Ni Cr Sc V Ba Rb Sr Zr Y Nb Ga Cu Zn Pb La Ce Th | 49 74 35 470 74 28 195 195 38 20.0 20 †262 127 5 17 41 2 | 46
68
47
433
119
74
191
242
48
24.9
20
†329
101
4
0
48 | 192
285
19
223
733
41
587
210
24
21.8
21
71
82
4
22
62
5 | 150
217
17
152
†2433
226
1083
322
22
18.2
20
38
88
13
32
87
7 | 5
1
0
125
166
30
58
30
43.9
21
0
14
3
20
26
5 | 11
18
4
45
105
5
458
18
3
2.4
21
0
23
2
0
22
2 | Major elements normalized on a volatile-free basis; FeO * is total Fe expressed as FeO; LOI is loss on ignition. "R" at end of sample number denotes a duplicate bead made from the same rock powder. [&]quot;†" denotes values > 120% of highest standard in lab. Table 2. XRF analyses of metasedimentary rocks from the St. Maries 30' x 60' quadrangle. Samples without map numbers are from east of the area in the Wallace quadrangle. | Map no. Sample no. Mineralogy Lithology Color 30' x 60' quad. 7.5' quad. Unit Lat. Long. | 18
98RL014
siltite-argillite
gray
St.Maries
Medimont
Ypl
47.45618
-116.60015 | 98RL013
siltite-argillite
gray
St.Maries
Medimont
Ypu
47.41666
-116.60535 | green
St.Maries
Medimont
Ypu
47.42882
-116.62633 | gray
St.Maries
Black Lake
Ypu
47.45053
-116.71876 | gray
St.Maries
Masonia
Yp
47.45329
-116.18176 | 98RL036
carbonate
siltite
St.Maries
Masonia
Yp
47.48394
-116.23103 | 98RL037
siltite-argillite
green/black
St.Maries
Masonia
Yp
47.49016
-116.23781 | 98RB003
mica
schist
St.Maries
Grandmother
Ys
47.07055
-116.07120 | |--|--|--|--|---|---|---|---|---| | | | | Unnormali | zed results (we | ight %) | | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O | 67.80
19.19
0.839
2.81
0.032
0.14
0.83
4.75
1.94 | 71.38
15.29
0.649
3.48
0.044
0.28
1.58
4.14 | 62.03
21.85
0.816
4.88
0.048
0.22
0.96
4.93
1.86 | 67.25
18.95
0.710
3.23
0.038
0.06
1.19
4.87 | 64.10
20.44
0.695
4.28
0.016
0.00
1.66
4.92
1.60 | 73.60
13.01
0.506
2.40
0.073
1.29
1.25
3.24
2.20 | 70.30
16.29
0.622
3.45
0.044
0.13
1.26
3.76
2.19 | 70.30
17.06
0.628
3.13
0.040
0.23
0.94
4.59
1.06 | | P ₂ O ₅
Total | 0.021
98.35 | 0.066
98.50 | 0.076
97.67 | 0.028
97.65 | 0.034
97.75 | 0.097
97.66 | 0.052
98.10 | 0.028
98.01 | | Total | 96.33 | 98.30 | 97.07 | 97.03 | 91.13 | 97.00 | 98.10 | 96.01 | | | | | Normalize | ed results (weig | ght %) | | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ | 68.93
19.51
0.853
2.86
0.033
0.14
0.84
4.83
1.97
0.021 | 72.47
15.52
0.659
3.53
0.045
0.28
1.60
4.20
1.61
0.067 | 63.51
†22.37
0.835
5.00
0.049
0.23
0.98
5.05
1.90
0.078 | 68.87
19.41
0.727
3.31
0.039
0.06
1.22
4.99
1.35
0.029 | 65.58
20.91
0.711
4.38
0.016
0.00
1.70
5.03
1.64
0.035 | 75.36
13.32
0.518
2.45
0.075
1.32
1.28
3.32
2.25
0.099 | 71.66
16.61
0.634
3.52
0.045
0.13
1.28
3.83
2.23
0.053 | 71.73
17.41
0.641
3.20
0.041
0.23
0.96
4.68
1.08
0.029 | | | | | TTACC | e elements (ppi | 11) | | | | | Cr
Sc
V
Ba
Rb
Sr
Zr
Y
Nb
Ga
Cu
Zn
Pb | 60
13
96
996
193
114
224
28
19.9
25
5
64
16 | 49
13
66
907
184
94
236
55
16.1
21
4
55
20 | 73
23
91
974
204
113
212
43
17.4
29
40
98
19 | 55
18
78
584
202
44
210
42
17.9
24
10
65
12 | 63
17
106
659
239
48
194
46
15.4
30
7
55 | 32
14
40
735
144
157
273
38
12.4
16
7
47
9 | 48
10
52
726
169
80
283
43
14.5
19
5
63
12 | 59
13
57
894
210
59
244
37
20.8
22
3
60
18 | | La
Ce
Th | 41
58
18 | 64
102
8 | 49
83
21 | 52
103
20 | 50
103
24 | 36
66
4 | 49
104
13 | 48
102
11 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. [&]quot;†" denotes values > 120% of highest standard in lab. Table 2. XRF analyses of metasedimentary rocks from the St. Maries and Wallace quadrangles (continued). | Map no. Sample no. Mineralogy Lithology Color 30' x 60' quad. | 26
98RL018
muscovite
schist
St. Maries | 98RL067
muscovite
schist
St. Maries | 98RL094
garnet-biotite
schist
Wallace | 28
98TF817
mica
schist
St. Maries | 98TF828
garnet-mica
schist
St. Maries | 30
98TF831
muscovite
schist
St. Maries | 31
98TF836
muscovite
schist
St. Maries | 32
98TF837
quartz-mica
schist
St. Maries | |---|--|--|--|---|--|--|--|--| | 7.5' quad. | Huckleberry | Merry Cr. | Widow Mtn. | Marble Mtn. | Grandmother | Marble Mtn. | Marble Mtn. | Marble Mtn. | | Unit
Lat. | Ys
47.22409 | Ys
47.06877 | Ys
47.07389 | Ys
47.20914 | Ys
47.11517 | Ys
47.14867 | Ys
47.21511 | Ys
47.21944 | | Long. | -116.19808 | -116.13683 | -115.92389 | -116.05003 | -116.09253 | -116.08486 | -116.03814 | -116.03486 | | · • | | | | ized results (w | | | | | | | | | | • | | | | | | SiO ₂ | 71.32 | 71.08 | 56.15 | 66.60 | 79.78 | 68.35 | 71.97 | 77.30 | | Al ₂ O ₃ | 16.10
0.644 | 16.35
0.609 | 13.93
1.170 | 18.93
0.722 | 10.42
0.309 | 16.99
0.663 | 13.91
0.530 | 10.45
0.381 | | TiO ₂
FeO* | 2.69 | 3.71 | 1.170 | 3.93 | 2.53 | 4.49 | 3.68 | 3.09 | | MnO | 0.027 | 0.042 | 0.092 | 0.038 | 0.029 | 0.052 | 0.166 | 0.054 | | CaO | 0.37 | 0.47 | 0.55 | 0.21 | 0.45 | 0.58 | 2.21 | 1.84 | | MgO | 0.92 | 1.27 | 8.53 | 1.15 | 1.41 | 1.25 | 1.51 | 2.01 | | K₂O | 4.02 | 3.93 | 5.32 | 5.37 | 2.51 | 4.67 | 1.52 | 2.05 | | Na ₂ O | 2.09 | 1.64 | 0.75 | 1.00 | 1.65 | 1.75 | 3.45 | 1.68 | | P_2O_5 | 0.034 | 0.047 | 0.273 | 0.033 | 0.056 | 0.035 | 0.081 | 0.143 | | Total | 98.22 | 99.15 | 98.32 | 97.99 | 99.15 | 98.83 | 99.03 | 98.99 | | | | | Normaliz | ed results (wei | ght %) | | | | | SiO_2 | 72.62 | 71.69 | 57.11 | 67.97 | 80.47 | 69.16 | 72.67 | 78.09 | | Al_2O_3 | 16.39 | 16.49 | 14.17 | 19.32 | 10.51 | 17.19 | 14.05 | 10.56 | | TiO ₂ | 0.656 | 0.614 | 1.190 | 0.737 | 0.312 | 0.671 | 0.535 | 0.385 | | FeO* | 2.74 | 3.74 | 11.76 | 4.01 | 2.55 | 4.54 |
3.72 | 3.12 | | MnO | 0.027 | 0.042 | 0.094 | 0.039 | 0.029 | 0.053 | 0.168 | 0.055 | | CaO | 0.38 | 0.47 | 0.56 | 0.21 | 0.45 | 0.59 | 2.23 | 1.86 | | MgO | 0.94 | 1.28 | 8.68 | 1.17 | 1.42 | 1.26 | 1.52 | 2.03 | | K ₂ O | 4.09 | 3.96 | 5.41 | 5.48 | 2.53 | 4.73 | 1.53 | 2.07 | | Na ₂ O
P ₂ O ₅ | 2.13
0.035 | 1.65
0.047 | 0.76
0.278 | 1.02
0.034 | 1.66
0.056 | 1.77
0.035 | 3.48
0.082 | 1.70
0.144 | | 1 205 | 0.033 | 0.047 | | | | 0.033 | 0.002 | 0.144 | | | | | Trac | e elements (pp | m) | | | | | Ni | 4 | 8 | 56 | 6 | 8 | 5 | 12 | 19 | | Cr | 47 | 45 | 45 | 54 | 18 | 52 | 40 | 34 | | Sc | 17 | 13 | 26 | 22 | 11 | 14 | 15 | 9 | | V | 71 | 66 | 172 | 77 | 23 | 80 | 53 | 26 | | Ba | 796 | 813 | 975 | 1256 | 710 | 819 | 245 | 375 | | Rb | 165 | 170 | 140 | 218 | 58 | 173 | 102 | 90 | | Sr
Z- | 131 | 130 | 23 | 65 | 81 | 121 | 184 | 106 | | Zr
Y | 228
35 | 228
40 | 167
20 | 235
47 | 376
25 | 196
31 | 236
35 | 143
17 | | Nb | 15.1 | 15.8 | 23.6 | 18.8 | 10.9 | 16.4 | 16.1 | 11.4 | | Ga | 21 | 21 | 25.0 | 28 | 11 | 21 | 15.1 | 12 | | Cu | 17 | 22 | 48 | 16 | 7 | 13 | 16 | 3 | | Zn | 41 | 61 | 144 | 70 | 90 | 84 | 66 | 53 | | Pb | 21 | 40 | 3 | 15 | 35 | 16 | 30 | 21 | | La | 42 | 56 | 31 | 58 | 31 | 42 | 41 | 13 | | Ce | 94 | 75 | 52 | 78 | 57 | 84 | 75 | 42 | | Th | 12 | 12 | 14 | 20 | 12 | 16 | 6 | 0 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. [&]quot;R" at end of sample number denotes a duplicate bead made from the same rock powder. "†" denotes values > 120% of highest standard in lab. Table 2. XRF analyses of metasedimentary rocks from the St. Maries and Wallace quadrangles (continued). | Map no.
Sample no. | 98TF845 | 33
98TF851 | 33
98TF851R | 33
98TF851AV | 34
98RL023 | 35
98RL030 | 36
98RL031 | 37
98RL114 | |--|-----------------------------|---------------------------------|-----------------------|------------------------|--|--|--------------------------------------|---| | Mineralogy
Lithology | garnet-mica
schist | garnet-mica
schist | duplicate | average | magnetite
siltite | siltite | argillite | siltite | | Color
30' x 60' quad.
7.5' quad.
Unit | Wallace
Widow Mtn.
Ys | St. Maries
Grandmother
Ys | Ys | Ys | light green
St. Maries
Rochat Peak
Yb | light green
St. Maries
Masonia
Yb | green
St. Maries
Masonia
Yb | greenish gray
St. Maries
Black Lake
Yb | | Lat.
Long. | 47.03908
-115.91286 | 47.01337
-116.07137 | | | 47.42972
-116.44607 | 47.45035
-116.24706 | 47.44506
-116.17514 | 47.47922
-116.71767 | | | | | Unnormal | lized results (w | eight %) | | | | | SiO | 62.02 | 66.34 | 66.30 | 66.22 | 69.63 | 70.80 | 67.29 | 60.02 | | SiO ₂
Al ₂ O ₃ | 62.02
23.49 | 17.15 | 17.30 | 66.32
17.23 | 16.05 | 16.35 | 20.01 | 69.93
15.34 | | Ai_2O_3
TiO_2 | 0.809 | 0.722 | 0.729 | 0.726 | 0.567 | 0.647 | 0.857 | 0.621 | | FeO* | 6.02 | 5.00 | 4.87 | 4.94 | 3.24 | 3.32 | 1.79 | 4.73 | | MnO | 0.017 | 0.028 | 0.027 | 0.028 | 0.027 | 0.003 | 0.002 | 0.028 | | CaO | 1.07 | 0.62 | 0.62 | 0.62 | 0.16 | 0.03 | 0.07 | 0.24 | | MgO | 1.23 | 2.08 | 2.12 | 2.10 | 1.60 | 0.66 | 0.66 | 1.58 | | K ₂ O | 3.02 | 5.09 | 5.10 | 5.10 | 5.06 | 5.59 | 6.98 | 5.07 | | Na ₂ O | 1.27 | 1.40 | 1.41 | 1.41 | 1.65 | 0.88 | 0.09 | 1.47 | | $P_2\hat{O}_5$ | 0.123 | 0.122 | 0.121 | 0.122 | 0.046 | 0.025 | 0.080 | 0.091 | | Total | 99.07 | 98.55 | 98.60 | 98.58 | 98.03 | 98.30 | 97.83 | 99.10 | | | | | Normaliz | zed results (wei | ght %) | | | | | SiO ₂ | 62.61 | 67.32 | 67.24 | 67.28 | 71.03 | 72.02 | 68.78 | 70.57 | | Al_2O_3 | †23.71 | 17.40 | 17.55 | 17.47 | 16.37 | 16.63 | 20.45 | 15.48 | | TiO ₂ | 0.817 | 0.733 | 0.739 | 0.736 | 0.578 | 0.658 | 0.876 | 0.627 | | FeO* | 6.07 | 5.07 | 4.94 | 5.01 | 3.30 | 3.37 | 1.83 | 4.77 | | MnO | 0.017 | 0.028 | 0.027 | 0.028 | 0.028 | 0.003 | 0.002 | 0.028 | | CaO | 1.08 | 0.63 | 0.63 | 0.63 | 0.16 | 0.03 | 0.07 | 0.24 | | MgO | 1.24 | 2.11 | 2.15 | 2.13 | 1.63 | 0.67 | 0.67 | 1.59 | | K_2O | 3.05 | 5.16 | 5.17 | 5.17 | 5.16 | 5.69 | †7.13 | 5.12 | | Na ₂ O | 1.28 | 1.42 | 1.43 | 1.43 | 1.68 | 0.90 | 0.09 | 1.48 | | P_2O_5 | 0.124 | 0.124 | 0.123 | 0.123 | 0.047 | 0.025 | 0.082 | 0.092 | | | | | Trac | ce elements (pp | m) | | | | | Ni | 45 | 36 | 37 | 37 | 19 | 16 | 11 | 18 | | Cr | 121 | 123 | 125 | 124 | 38 | 39 | 50 | 46 | | Sc | 18 | 19 | 16 | 18 | 19 | 8 | 18 | 18 | | \mathbf{V} | 142 | 96 | 106 | 101 | 61 | 63 | 72 | 63 | | Ba | 363 | 1102 | 1118 | 1110 | 678 | 632 | 1270 | 781 | | Rb | 125 | 167 | 165 | 166 | 215 | 256 | 264 | 222 | | Sr | 67 | 125 | 124 | 125 | 49 | 25 | 9 | 49 | | Zr | 142 | 332 | 340 | 336 | 195 | 288 | 360 | 211 | | Y | 31 | 12 | 13 | 13 | 58 | 35 | 64 | 32 | | Nb | 19.0 | 15.2 | 15.6 | 15.4 | 14.6 | 15.4 | 20.0 | 15.3 | | Ga | 31 | 25 | 23 | 24 | 19 | 20 | 25 | 22 | | Cu | 25 | 8 | 9 | 9 | 0 | 0 | 0 | 3 | | Zn | 78 | 242 | 244 | 243 | 66 | 14 | 16 | 56 | | Pb | 12 | 52
28 | 52 | 52 | 10 | 2 | 0 | 6 | | La | 43 | 38 | 26
57 | 32 | 60
74 | 52 | 68 | 33 | | Ce | 105
15 | 52 | 57
15 | 55 | 74
15 | 92
24 | 116
17 | 76
9 | | Th | 15 | 10 | 15 | 13 | 13 | 24 | 1 / | 9 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. [&]quot;R" at end of sample number denotes a duplicate bead made from the same rock powder. "†" denotes values > 120% of highest standard in lab. Table 2. XRF analyses of metasedimentary rocks from the St. Maries and Wallace quadrangles (continued). | Map no. Sample no. | 38
98RL115 | 38
98RL115R | 38
98RL115AV | 39
98RL024 | 40
98RL028 | 41
98RL038 | 42
98RL047 | 43
98RL048 | |---|--|-----------------------|------------------------|----------------------------------|----------------------|--|---|---| | Mineralogy
Lithology
Color
30' x 60' quad.
7.5' quad. | siltite
light green
St. Maries
Black Lake | duplicate | average | quartzite St. Maries Rochat Peak | | siltite
purplish gray
St. Maries
Polaris Peak | siltite-argillite
purple
St. Maries
Polaris Peak | argillite
waxy green
St. Maries
Polaris Peak | | Unit
Lat. | Yb
47.49377 | Yb | Yb | Yr
47.44074 | | Ysr
47.48028 | Ysr
47.49187 | Ysr
47.49039 | | Long. | -116.72379 | | T | -116.38177 | | -116.04015 | -116.06736 | -116.06671 | | | | | Unnormani | zed results (w | eignt %) | | | | | SiO ₂ | 75.00 | 74.49 | 74.75 | 94.98 | 70.63 | 75.52 | 70.88 | 73.00 | | Al ₂ O ₃ | 13.66 | 13.53 | 13.60 | 2.89 | 16.07 | 14.03 | 16.35 | 17.08 | | TiO ₂
FeO* | 0.478
2.65 | 0.478
2.77 | 0.478
2.71 | 0.046
0.20 | 0.620
3.54 | 0.543
2.83 | 0.635 | 0.591
1.00 | | MnO | 0.023 | 0.023 | 0.023 | 0.20 | 0.001 | 0.004 | 4.13
0.009 | 0.002 | | CaO | 0.023 | 0.023 | 0.023 | 0.000 | 0.08 | 0.004 | 0.009 | 0.002 | | MgO | 1.37 | 1.33 | 1.35 | 0.00 | 0.74 | 0.35 | 0.69 | 0.13 | | K ₂ O | 4.42 | 4.41 | 4.42 | 1.56 | 5.46 | 5.07 | 5.63 | 5.69 | | Na ₂ O | 1.53 | 1.51 | 1.52 | 0.00 | 1.05 | 0.12 | 0.08 | 0.13 | | P_2O_5 | 0.012 | 0.015 | 0.014 | 0.008 | 0.085 | 0.051 | 0.108 | 0.129 | | Total | 99.22 | 98.64 | 98.93 | 99.68 | 98.28 | 98.52 | 98.60 | 98.70 | | | | | Normaliza | ed results (wei | ght %) | | | | | | | | | | | | | | | SiO ₂ | 75.59 | 75.52 | 75.55 | 95.28 | 71.87 | 76.66 | 71.88 | 73.96 | | Al ₂ O ₃ | 13.77 | 13.72 | 13.74 | 2.90 | 16.35 | 14.24 | 16.58 | 17.31 | | TiO ₂ | 0.482 | 0.485 | 0.483 | 0.046 | 0.631 | 0.551 | 0.644 | 0.599 | | FeO* | 2.67 | 2.80 | 2.74 | 0.20 | 3.61 | 2.87 | 4.19 | 1.02 | | MnO | 0.023
0.08 | 0.023
0.09 | 0.023
0.09 | 0.000 | 0.001 | 0.004
0.00 | 0.009 | 0.002
0.15 | | CaO
MgO | 1.38 | 1.35 | 1.36 | 0.00
0.00 | 0.08
0.75 | 0.00 | 0.09
0.70 | 0.13 | | K,O | 4.45 | 4.47 | 4.46 | 1.56 | 5.56 | 5.15 | 5.71 | 5.77 | | Na ₂ O | 1.54 | 1.53 | 1.54 | 0.00 | 1.07 | 0.12 | 0.08 | 0.13 | | P_2O_5 | 0.012 | 0.015 | 0.014 | 0.008 | 0.086 | 0.052 | 0.110 | 0.131 | | | | | Trace | e elements (pp | m) | | | | | Ni | 13 | 15 | 14 | 2 | 16 | 13 | 25 | 9 | | Cr | 23 | 24 | 24 | 3 | 45 | 36 | 42 | 52 | | Sc | 6 | 13 | 10 | 2 | 10 | 10 | 12 | 13 | | V | 41 | 38 | 40 | 6 | 57 | 46 | 65 | 72 | | Ba | 697 | 705 | 701 | 234 | 871 | 761 | 802 | 794 | | Rb | 197 | 195 | 196 | 51 | 239 | 225 | 267 | 257 | | Sr | 53 | 54 | 54 | 6 | 23 | 12 | 8 | 7 | | Zr | 252 | 254 | 253 | 45 | 247 | 257 | 258 | 178 | | Y | 36 | 38 | 37 | 8 | 36 | 43 | 49 | 34 | | Nb | 16.0 | 16.0 | 16.0 | 3.8 | 14.9 | 13.8 | 16.0 | 15.6 | | Ga | 17 | 17 | 17 | 2 | 22 | 18 | 22 | 22 | | Cu | 0 | 0 | 0 | 4 | 2 | 3 | 2 | 2 | | Zn | 31 | 30 | 31 | 0 | 40 | 5 | 18 | 24 | | Pb | 4
17 | 5
14 | 5 | 7 | 4 | 3 | 4 | 2 | | La
Co | 17
59 | 14
35 | 16
47 | 6
21 | 83 | 89 | 104 | 55
100 | | Ce
Th | 14 | 16 | 15 | 6 | 170
20 | 153
13 | 162
12 | 109
17 | | | | | | | | | | | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. $"\dagger"$ denotes values > 120% of highest standard in lab. Table 2. XRF analyses of metasedimentary rocks from the St. Maries and Wallace quadrangles (continued). | Map no. Sample no. Mineralogy Lithology Color 30' x 60' quad. 7.5' quad. Unit Lat. Long. |
98RL137
muscovite-
schist
Wallace
Fishhook Cr.
Ysr
47.17528
-115.84778 | 98RL092
mica
schist
Wallace
Widow Mtn.
Yqrv
47.06028
-115.94444 | 98RL096
phyllite
gray
Wallace
Hoyt Mtn.
Ysrv
47.12972
-115.98028 | 98RL100
siltite-argillite
gray
Wallace
Hoyt Mtn.
Ysrv
47.24194
-115.9675 | 98RL136
muscovite-
schist
Wallace
Fishhook Cr.
Ysrv
47.15500
-115.85889 | 98RL050
dolomitic
siltite
green
St. Maries
Polaris Peak
Ywl
47.43765
-116.07230 | 98RL051
siltite-argillite
black
St. Maries
Polaris Peak
Ywm
47.46697
-116.06266 | 46
98RL070
siltite
brown
St. Maries
St. Joe
Ywml
47.26458
-116.34740 | |--|---|--|---|--|--|---|--|--| | | | | Unnorma | lized results (wo | eight %) | | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ | 67.45
17.86
0.665
4.92
0.053
0.16
1.56
4.91
0.85
0.064 | 69.92
15.21
0.631
4.16
0.215
1.15
2.14
4.00
1.29
0.069 | 71.33
14.08
0.565
4.33
0.039
1.46
1.62
2.58
3.50
0.054 | 67.81
15.74
0.498
4.13
0.032
0.46
3.79
5.56
0.40
0.073 | 64.99
17.95
0.672
5.86
0.068
0.75
2.16
4.22
2.00
0.085 | 63.45
14.33
0.555
4.18
0.037
3.03
6.05
3.48
1.29
0.120 | 70.22
13.18
0.562
2.86
0.032
2.42
3.13
3.79
1.42
0.056 | 71.19
14.23
0.335
2.71
0.014
0.66
2.87
5.73
1.42
0.050 | | Total | 98.49 | 98.78 | 99.56 | 98.49 | 98.76 | 96.52 | 97.67 | 99.21 | | | | | Normali | zed results (wei | ght %) | | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ | 68.48 18.13 0.675 5.00 0.054 0.16 1.58 4.99 0.86 0.065 | 70.78
15.40
0.639
4.21
0.218
1.16
2.17
4.05
1.31
0.070 | 71.65
14.14
0.568
4.35
0.039
1.47
1.63
2.59
3.52
0.054 | 68.85
15.98
0.506
4.19
0.032
0.47
3.85
5.65
0.41 | 65.81
18.18
0.680
5.93
0.069
0.76
2.19
4.27
2.03
0.086 | 65.74
14.85
0.575
4.33
0.038
3.14
6.27
3.61
1.34
0.124 | 71.89
13.49
0.575
2.93
0.033
2.48
3.20
3.88
1.45
0.057 | 71.76
14.34
0.338
2.73
0.014
0.67
2.89
5.78
1.43
0.050 | | | | | Tra | ce elements (pp | m) | | | | | Ni Cr Sc V Ba Rb Sr Zr Y Nb Ga Cu Zn Pb La Ce | 11
57
17
77
805
196
87
198
37
15.4
23
19
47
19
33
66 | 18
48
9
62
709
161
113
275
28
16.3
21
5
67
15
38 | 15
40
16
55
592
142
195
217
30
13.8
19
8
76
26
33
79 | 14
38
20
62
1397
225
23
171
30
15.7
20
0
43
1
25
54 | 19
60
16
91
602
198
160
198
43
16.2
25
16
98
27
41 | 15
48
16
63
1029
143
28
249
46
17.8
21
0
75
5
62
94 | 15
41
10
61
686
171
39
195
30
14.7
17
5
†357
3
29
50 | 6
11
8
26
642
288
39
206
29
19.2
20
0
9
1
32
87 | | Ce
Th | 13 | 3 | 79
17 | 5 | 12 | 6 | 19 | 23 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. $"\dagger"$ denotes values > 120% of highest standard in lab. Table 2. XRF analyses of metasedimentary rocks from the St. Maries and Wallace quadrangles (continued). | Map no.
Sample no. | 47
98TF822 | 48
98RL006 | 49
98RL010 | 50
98RL009 | 51
98RL053 | 52
98RL101 | 53
98RL016 | 53
98RL016R | |-------------------------------|-------------------------|-----------------------|--------------------------|--------------------------|----------------------------|----------------------|---------------------------------|-----------------------| | Mineralogy
Lithology | siltite | siltite-argillite | dolomitic
siltite | siltite-argillite | argillite | siltite-argillite | scapolitic
siltite-argillite | duplicate | | Color | gray | black and | 0.36 | green | green | green | gray | 1 | | 30' x 60' quad.
7.5' quad. | St. Maries
Merry Cr. | St. Maries
St. Joe | St. Maries
St. Maries | St. Maries
St. Maries | St. Maries
Polaris Peak | St. Maries
Calder | St. Maries
Huckleberry | | | Unit | Yqw | Ywu1 | Ywu2 | Ywu3 | Ywu3 | Ywu3 | Ywu | Ywu | | Lat. | 47.05819 | 47.35668 | 47.33608 | 47.32786 | 47.42486 | 47.33746 | 47.22526 | | | Long. | -116.17667 | -116.27741 | -116.55755 | -116.56716 | -116.00930 | -116.16518 | -116.23396 | | | | | | Unnorma | lized results (we | eight %) | | | | | SiO ₂ | 73.14 | 78.50 | 75.55 | 63.13 | 55.98 | 70.60 | 66.11 | 66.17 | | Al_2O_3 | 12.50 | 13.34 | 9.35 | 19.78 | 25.95 | 15.16 | 19.58 | 19.64 | | TiO ₂ | 0.522 | 0.566 | 0.442 | 0.857 | 0.419 | 0.705 | 0.635 | 0.633 | | FeO* | 2.01 | 1.70 | 2.05 | 3.65 | 2.79 | 3.20 | 2.24 | 2.27 | | MnO
CaO | 0.012
0.86 | 0.003
0.03 | 0.021
2.22 | 0.012
0.18 | 0.002
0.02 | 0.010
0.15 | 0.005
0.22 | 0.006
0.21 | | MgO | 2.46 | 0.40 | 3.25 | 2.45 | 2.57 | 2.47 | 2.09 | 2.11 | | K ₂ O | 5.21 | 3.37 | 2.53 | 6.11 | 9.82 | 4.52 | 6.72 | 6.73 | | Na_2O | 2.37 | 0.32 | 1.69 | 1.06 | 0.14 | 1.40 | 0.31 | 0.32 | | P_2O_5 | 0.060 | 0.065 | 0.134 | 0.123 | 0.049 | 0.107 | 0.091 | 0.092 | | Total | 99.14 | 98.30 | 97.23 | 97.35 | 97.74 | 98.32 | 98.00 | 98.18 | | | | | Normali | zed results (wei | ght %) | | | | | SiO ₂ | 73.77 | 79.86 | 77.70 | 64.85 | 57.27 | 71.81 | 67.46 | 67.40 | | Al_2O_3 | 12.61 | 13.57 | 9.62 | 20.32 | †26.55 | 15.42 | 19.98 | 20.00 | | TiO ₂ | 0.527 | 0.576 | 0.455 | 0.880 | 0.429 | 0.717 | 0.648 | 0.645 | | FeO* | 2.03 | 1.73 | 2.10 | 3.75 | 2.86 | 3.25 | 2.28 | 2.31 | | MnO
CaO | 0.012
0.87 | 0.003
0.03 | 0.022
2.28 | 0.012
0.18 | 0.002
0.02 | 0.010
0.15 | 0.005
0.22 | 0.006
0.21 | | MgO | 2.48 | 0.03 | 3.34 | 2.52 | 2.63 | 2.51 | 2.13 | 2.15 | | K ₂ O | 5.26 | 3.43 | 2.60 | 6.28 | †10.05 | 4.60 | †6.86 | †6.85 | | Na ₂ O | 2.39 | 0.33 | 1.74 | 1.09 | 0.14 | 1.42 | 0.32 | 0.33 | | P_2O_5 | 0.061 | 0.066 | 0.138 | 0.126 | 0.050 | 0.109 | 0.093 | 0.094 | | | | | Tra | ce elements (pp | m) | | | | | Ni | 11 | 14 | 17 | 13 | 12 | 19 | 7 | 8 | | Cr | 34 | 45 | 33 | 83 | 10 | 76 | 65 | 62 | | Sc | 8 | 13 | 9 | 30 | 14 | 15 | 24 | 24 | | V | 51 | 57 | 43 | 101 | 39 | 89 | 103 | 98 | | Ba | 997 | 608 | 534 | 1616 | †2432 | 1464 | 750 | 763 | | Rb
Sr | 139
62 | 147
27 | 112
55 | 222
43 | 381
7 | 163
40 | 206
9 | 206
10 | | Zr | 276 | 287 | 283 | 326 | 552 | 309 | 225 | 226 | | Y | 30 | 32 | 29 | 48 | 149 | 34 | 33 | 34 | | Nb | 14.9 | 13.5 | 9.4 | 20.5 | 29.8 | 16.1 | 15.2 | 15.0 | | Ga | 17 | 18 | 14 | 28 | 46 | 19 | 28 | 25 | | Cu | †198 | 12 | 1 | 0 | 0 | 36 | 2 | 9 | | Zn | 8 | 15 | 50 | 37 | 21 | 38 | 0 | 0 | | Pb | 3
14 | 0
33 | 2
5 | 2
36 | 0
37 | 3
19 | 1
16 | 1
11 | | La
Ce | 42 | 33
80 | 42 | 36
94 | 84 | 36 | 25 | 11 | | Th | 15 | 10 | 5 | 14 | 15 | 10 | 26 | 25 | | | | | | | | | | | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. $"\dagger"$ denotes values > 120% of highest standard in lab. Table 2. XRF analyses of metasedimentary rocks from the St. Maries and Wallace quadrangles (continued). | Map no. Sample no. Mineralogy Lithology Color | 53
98RL016AV
average | 54
98RL140
siltite-argillite
dark gray | 55
98RL145
siltite-argillite
gray | 56
98RL172
siltite-argillite
gray | 57
98RL173
siltite
green | 58
98RB008
garnet
schist | 59
98RB014
garnet-
schist | 60
98RL073
staurolite-
schist | |---|----------------------------|---|--|--|-----------------------------------|-----------------------------------|------------------------------------|--| | 30' x 60' quad.
7.5' quad.
Unit | Ywu | St. Maries
Plummer
Ywu | St. Maries
West Dennis
Ywu | St. Maries
Tensed
Ywu | St. Maries
Sanders
Ywu | St. Maries
Merry Cr.
Ysw | St. Maries
Clarkia
Ysw | St. Maries
Fernwood
Ysw | | Lat.
Long. | | 47.34121
-116.92940 | | 47.12508
-116.90314 | 47.06711
-116.78454 | 47.00540
-116.21802 | 47.02090
-116.27823 | 47.09577
-116.43070 | | | | | Unnormal | ized results (we | ight %) | | | | | SiO, | 66.14 | 71.99 | 67.61 | 68.13 | 67.86 | 75.57 | 65.60 | 65.65 | | Al_2O_3 | 19.61 | 17.02 | 16.47 | 18.03 | 17.04 | 11.05 | 19.45 | 21.77 |
 TiO ₂ | 0.63 | 0.654 | 0.721 | 0.657 | 0.670 | 0.507 | 0.765 | 0.767 | | FeO* | 2.25 | 2.68 | 4.81 | 3.29 | 4.65 | 5.38 | 4.67 | 3.19 | | MnO | 0.01 | 0.000 | 0.032 | 0.023 | 0.064 | 0.070 | 0.047 | 0.136 | | CaO | 0.22 | 0.01 | 0.31 | 0.11 | 0.29 | 1.45 | 0.12 | 0.23 | | MgO | 2.10 | 0.54 | 2.25 | 1.65 | 1.69 | 1.95 | 1.83 | 0.96 | | K_2O | 6.73 | 5.01 | 5.22 | 5.45 | 4.46 | 2.05 | 4.46 | 4.90 | | Na ₂ O | 0.32 | 0.19 | 1.18 | 0.15 | 1.28 | 0.55 | 0.77 | 0.88 | | P_2O_5 | 0.09 | 0.078 | 0.118 | 0.033 | 0.121 | 0.068 | 0.121 | 0.144 | | Total | 98.09 | 98.17 | 98.72 | 97.52 | 98.12 | 98.64 | 97.84 | 98.63 | | | | | Normaliz | zed results (weig | ght %) | | | | | SiO, | 67.43 | 73.33 | 68.49 | 69.86 | 69.16 | 76.61 | 67.05 | 66.57 | | Al_2O_3 | 19.99 | 17.34 | 16.68 | 18.49 | 17.37 | 11.20 | 19.88 | 22.07 | | TiO ₂ | 0.646 | 0.666 | 0.730 | 0.674 | 0.683 | 0.514 | 0.782 | 0.778 | | FeO* | 2.30 | 2.73 | 4.87 | 3.37 | 4.74 | 5.45 | 4.78 | 3.23 | | MnO | 0.006 | 0.000 | 0.032 | 0.024 | 0.065 | 0.071 | 0.048 | 0.138 | | CaO | 0.22 | 0.01 | 0.31 | 0.11 | 0.30 | 1.47 | 0.12 | 0.23 | | MgO | 2.14 | 0.55 | 2.28 | 1.69 | 1.72 | 1.98 | 1.87 | 0.97 | | K ₂ O | 6.86 | 5.10 | 5.29 | 5.59 | 4.55 | 2.08 | 4.56 | 4.97 | | Na ₂ O | 0.32
0.093 | 0.19
0.079 | 1.20
0.120 | 0.15 | 1.30 | 0.56 | 0.79 | 0.89 | | P_2O_5 | 0.093 | 0.079 | | 0.034 | 0.123 | 0.069 | 0.124 | 0.146 | | | | | Trac | e elements (ppr | n) | | | | | Ni | 8 | 7 | 20 | 17 | 26 | 41 | 9 | 5 | | Cr | 64 | 50 | 70 | 64 | 66 | 44 | 68 | 71 | | Sc | 24 | 19 | 23 | 23 | 15 | 11 | 24 | 29 | | V | 101 | 77 | 101 | 91 | 82 | 63 | 98 | 110 | | Ba | 757 | 694 | 1061 | 439 | 1022 | 247 | 769 | 1095 | | Rb
Sr | 206
10 | 205
29 | 175
47 | 247
42 | 169
49 | 139 | 160
41 | 123
126 | | Zr | 226 | 244 | 351 | 220 | 277 | 81
274 | 202 | 257 | | Y | 34 | 48 | 26 | 34 | 35 | 40 | 47 | 45 | | Nb | 15.1 | 16.2 | 19.3 | 16.3 | 16.7 | 18.5 | 18.9 | 15.5 | | Ga | 27 | 20 | 22 | 24 | 24 | 15 | 26 | 27 | | Cu | 6 | 9 | 18 | 15 | 87 | 12 | 3 | 8 | | Zn | 0 | 8 | 83 | 113 | 76 | 129 | 67 | 99 | | Pb | 1 | 1 | 15 | 3 | 17 | 13 | 8 | 16 | | La | 14 | 82 | 16 | 24 | 24 | 42 | 45 | 36 | | Ce | 18 | 118 | 51 | 23 | 47 | 47 | 67 | 47 | | Th | 26 | 17 | 24 | 9 | 22 | 20 | 8 | 19 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. $"\dagger"$ denotes values > 120% of highest standard in lab. Table 2. XRF analyses of metasedimentary rocks from the St. Maries and Wallace quadrangles (continued). | Map no.
Sample no. | 98RL041 | 98RL042 | 61
98RL104 | 62
98RL141 | 98RL043 | 63
98RL086 | 64
98RL083 | 65
98RL147 | |----------------------------------|--------------------|--------------------|----------------------------|-----------------------|--------------------|-----------------------|-----------------------|---------------------------| | Mineralogy
Lithology
Color | quartzite | argillite
red | siltite-argillite
green | argillite
purple | quartzite | quartzite | siltite
gray-green | siltite
green | | 30' x 60' quad.
7.5' quad. | Wallace
Wallace | Wallace
Wallace | St. Maries
Calder | St. Maries
Plummer | Wallace
Wallace | St. Maries
Benewah | St. Maries
Emida | St. Maries
West Dennis | | Unit
Lat. | Ysp1q
47.44056 | Ysp1a
47.43500 | Ysp1a
47.34256 | Ysp1a
47.31312 | Ysp4
47.43277 | Ysp4
47.26386 | Y1
47.15000 | Y1
47.07973 | | Long. | -115.995833 | -115.99584 | -116.14695 | -116.94001 | -115.99611 | -116.64112 | -116.61267 | -116.65841 | | | | | Unnormali | zed results (we | eight %) | | | | | SiO ₂ | 85.87 | 59.57 | 73.43 | 63.96 | 95.20 | 88.37 | 73.43 | 68.77 | | Al_2O_3 | 6.79 | 19.68 | 13.06 | 17.98 | 2.35 | 4.70 | 14.06 | 15.67 | | TiO ₂ | 0.193 | 0.778 | 0.511 | 0.804 | 0.050 | 0.665 | 0.615 | 0.831 | | FeO* | 1.04 | 6.49 | 3.34 | 5.70 | 0.36 | 3.43 | 3.61 | 3.55 | | MnO | 0.031 | 0.005
0.09 | 0.003 | 0.001 | 0.000 | 0.002 | 0.002 | 0.006 | | CaO
MgO | 0.52
0.62 | 2.57 | 0.22
2.76 | 0.07
1.93 | 0.00
0.15 | 0.00
0.13 | 0.01
1.74 | 0.15
2.07 | | MgO
K ₂ O | 2.18 | 7.92 | 4.51 | 6.99 | 1.46 | 2.01 | 4.55 | 5.66 | | Na ₂ O | 1.68 | 0.58 | 0.60 | 0.33 | 0.05 | 0.05 | 0.13 | 1.95 | | P_2O_5 | 0.058 | 0.098 | 0.185 | 0.054 | 0.011 | 0.016 | 0.021 | 0.066 | | Total | 98.98 | 97.78 | 98.62 | 97.59 | 99.63 | 99.37 | 98.17 | 98.73 | | 10001 | 70.70 | 37.70 | 70.02 | 27.52 | 77.03 | 33.37 | 70.17 | 70.75 | | | | | Normaliza | ed results (wei | ght %) | | | | | SiO, | 86.76 | 60.92 | 74.46 | 65.54 | 95.55 | 88.93 | 74.80 | 69.66 | | Al_2O_3 | 6.86 | 20.13 | 13.24 | 18.42 | 2.36 | 4.73 | 14.32 | 15.87 | | TiO ₂ | 0.195 | 0.796 | 0.518 | 0.824 | 0.050 | 0.669 | 0.626 | 0.842 | | FeO* | 1.05 | 6.64 | 3.39 | 5.84 | 0.36 | 3.45 | 3.68 | 3.60 | | MnO | 0.031 | 0.005 | 0.003 | 0.001 | 0.000 | 0.002 | 0.002 | 0.006 | | CaO | 0.53 | 0.09 | 0.22 | 0.07 | 0.00 | 0.00 | 0.01 | 0.15 | | MgO | 0.63 | 2.63 | 2.80 | 1.98 | 0.15 | 0.13 | 1.77 | 2.10 | | K_2O | 2.20 | †8.10 | 4.57 | †7.16 | 1.47 | 2.02 | 4.63 | 5.73 | | Na ₂ O | 1.70 | 0.59 | 0.61 | 0.11 | 0.05 | 0.05 | 0.13 | 1.98 | | P_2O_5 | 0.059 | 0.100 | 0.188 | 0.055 | 0.011 | 0.016 | 0.021 | 0.067 | | | | | Trace | e elements (pp | m) | | | | | Ni | 3 | 22 | 31 | 14 | 5 | 4 | 18 | 20 | | Cr | 13 | 73 | 48 | 95 | 1 | 47 | 57 | 88 | | Sc | 8 | 18 | 13 | 24 | 0 | 7 | 15 | 17 | | \mathbf{V} | 23 | 110 | 64 | 104 | 10 | 53 | 76 | 108 | | Ba | 848 | 453 | 496 | 517 | 179 | 221 | 1074 | 810 | | Rb | 65 | 278 | 161 | 255 | 31 | 51 | 206 | 181 | | Sr | 69 | 22 | 21 | 18 | 12 | 12 | 31 | 47 | | Zr | 139 | 218 | 231 | 340 | 88 | 717 | 405 | 208 | | Y
Nb | 12
4.7 | 56
16.6 | 37
11.6 | 60
19.6 | 8
4.5 | 21
14.4 | 30 | 20
23.7 | | Ga | 5 | 28 | 14 | 26 | 3 | 3 | 14.1
19 | 23.7 | | Ga
Cu | 0 | 0 | 11 | 5 | 0 | 0 | 0 | 0 | | Zn | 5 | 53 | 30 | 13 | 0 | 0 | 1 | 2 | | Pb | 5 | 12 | 4 | 5 | 6 | 7 | 1 | 2 | | La | 20 | 49 | 48 | 76 | 3 | 11 | 52 | 14 | | Ce | 17 | 99 | 84 | 144 | 12 | 39 | 74 | 31 | | Th | 18 | 20 | 14 | 11 | 4 | 15 | 12 | 15 | | | | | | | | | | | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. $"\dagger"$ denotes values > 120% of highest standard in lab. Table 2. XRF analyses of metasedimentary rocks from the St. Maries and Wallace quadrangles (continued). | Map no. | 66 | 67 | |-----------------|-------------|-------------------| | Sample no. | 98RL148 | 98TF852 | | Mineralogy | | | | Lithology | siltite | siltite-argillite | | Color | gray-green | gray-green | | 30' x 60' quad. | St. Maries | St. Maries | | 7.5' quad. | West Dennis | West Dennis | | Unit | Yl | Yl | | Lat. | 47.06975 | 47.06842 | | Long. | -116.65761 | -116.66347 | | | | | ### Unnormalized results (weight %) | SiO ₂ | 65.20 | 68.45 | |-------------------|-------|-------| | Al_2O_3 | 18.95 | 14.32 | | TiO ₂ | 0.890 | 0.701 | | FeO* | 3.19 | 4.19 | | MnO | 0.005 | 0.008 | | CaO | 0.17 | 0.25 | | MgO | 1.60 | 3.66 | | K ₂ O | 7.32 | 5.11 | | Na ₂ O | 1.38 | 1.66 | | P_2O_5 | 0.125 | 0.147 | | Total | 98.83 | 98.49 | ### Normalized results (weight %) | SiO ₂ | 65.98 | 69.50 | |-------------------|-------|-------| | Al_2O_3 | 19.18 | 14.54 | | TiO ₂ | 0.901 | 0.712 | | FeO* | 3.22 | 4.25 | | MnO | 0.005 | 0.008 | | CaO | 0.17 | 0.25 | | MgO | 1.62 | 3.72 | | K ₂ O | †7.41 | 5.19 | | Na ₂ O | 1.40 | 1.69 | | P_2O_5 | 0.126 | 0.149 | | | | | # Trace elements (ppm) | Ni | 11 | 27 | |--------------|------|------| | Cr | 90 | 69 | | Sc | 16 | 16 | | \mathbf{V} | 121 | 80 | | Ba | 1506 | 960 | | Rb | 190 | 187 | | Sr | 41 | 37 | | Zr | 547 | 426 | | Y | 33 | 34 | | Nb | 20.6 | 13.8 | | Ga | 31 | 23 | | Cu | 0 | 3 | | Zn | 0 | 11 | | Pb | 7 | 0 | | La | 59 | 51 | | Ce | 98 | 102 | | Th | 13 | 7 | | | | | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. [&]quot;†" denotes values > 120% of highest standard in lab. Table 3. ICP analyses of metasedimentary rocks in the St. Maries and Wallace quadrangles. See Table 2 for rock descriptions and locations. | Map no.
Sample no.
Unit | 18
98RL014
Ypl | 22
98RL032
Yp | 25
98RB003
Ys | 28
98TF817
Ys | 34
98RL023
Yb | 35
98RL030
Yb | 39
98RL024
Yr | 40
98RL028
Ysr | 45
98RL051
Ywm | |-------------------------------|----------------------|----------------------------|---------------------|---------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------| | | | | | Trace elem | ents (ppm) | | | | | | La | 40.93 | 57.66 | 47.28 | 52.44 | 60.32 | 47.48 | 9.37 | 101.52 | 25.14 | | Ce | 72.43 | 107.18 | 89.06 | 101.88 | 73.45 | 92.93 | 20.82 | 179.05 | 48.85 | | Pr | 7.99 | 12.21 | 10.00 | 11.89 | 13.89 | 10.51 | 2.54 | 20.24 | 5.39 | | Nd | 30.69 | 46.89 | 38.40 | 47.63 | 54.64 | 40.77 | 11.17 | 76.04 | 21.01 | | Sm | 6.68 | 10.19 | 8.28 | 10.83 | 12.57 | 8.87 | 2.76 | 13.70 | 4.36 | | Eu | 1.28 | 1.91 | 1.35 | 1.73 | 2.63 | 1.76 | 0.58 | 2.29 | 0.93 | | Gd | 5.67 | 8.69 | 7.05 | 9.85 | 11.18 | 7.30 | 2.49 | 8.88 | 3.96 | | Tb | 1.00 | 1.48 | 1.19 | 1.68 | 2.00 | 1.17 | 0.40 | 1.41 | 0.73 | | Dy | 5.93 | 8.78 | 7.04 | 9.92 | 11.98 | 6.78 | 2.21 | 7.67 | 4.81 | | Ho | 1.20 | 1.75 | 1.40 | 2.02 | 2.33 | 1.37 | 0.37 | 1.49 | 1.01 | | Er | 3.40 | 5.00 | 3.88 | 5.71 | 6.00 | 4.00 | 0.89 | 4.14 | 2.95 | | Tm | 0.53 | 0.75 | 0.59 | 0.88 | 0.86 | 0.64 | 0.13 | 0.63 | 0.45 | | Yb | 3.57 | 4.74 | 3.70 | 5.54 | 5.01 | 4.21 | 0.77 | 4.15 | 2.80 | | Lu | 0.60 | 0.76 | 0.59 |
0.89 | 0.74 | 0.68 | 0.11 | 0.67 | 0.44 | | Ba | 941 | 648 | 849 | 1212 | 647 | 611 | 213 | 818 | 639 | | Th | 18.49 | 20.23 | 19.00 | 16.41 | 11.38 | 14.85 | 2.43 | 17.20 | 10.60 | | Nb | 19.36 | 15.75 | 15.42 | 17.56 | 14.68 | 15.03 | 1.36 | 14.97 | 12.35 | | Y | 32.52 | 50.47 | 38.00 | 56.55 | 62.94 | 38.11 | 8.50 | 41.12 | 30.44 | | Hf | 6.90 | 6.09 | 6.54 | 6.66 | 5.75 | 8.14 | 1.13 | 7.10 | 5.23 | | Ta | 1.53 | 1.25 | 1.22 | 1.22 | 1.04 | 1.12 | 0.12 | 1.12 | 0.90 | | \mathbf{U} | 3.35 | 3.52 | 3.77 | 3.60 | 2.79 | 3.11 | 0.65 | 2.98 | 2.45 | | Pb | 20.28 | 51.93 | 18.24 | 13.16 | 10.57 | 5.34 | 4.24 | 5.10 | 6.45 | | Rb | 184.9 | 228.9 | 196.2 | 211.2 | 208.9 | 246.3 | 50.1 | 227.7 | 154.9 | | Cs | 9.21 | 13.08 | 11.88 | 12.85 | 11.63 | 11.71 | 1.36 | 18.46 | 9.25 | | Sr | 128 | 53 | 64 | 66 | 52 | 27 | 6 | 24 | 40 | | Sc | 20.0 | 21.1 | 13.7 | 17.1 | 13.6 | 13.9 | 1.1 | 14.5 | 13.1 | Table 3. ICP analyses of metasedimentary rocks in the St. Maries and Wallace quadrangles (continued). | Map no.
Sample no.
Unit | 48
98RL006
Ywu1 | 54
98RL140
Ywu | 60
98RL073
Ysw | 98RL041
Ysp1q | 98RL042
Ysp1a | 98RL043
Ysp4 | 65
98RL147
Yl | 65
98RL147R
duplicate | 65
98RL147AV
average | |-------------------------------|------------------------------|-----------------------------|-----------------------------|------------------|------------------|-----------------|----------------------------|-----------------------------|----------------------------| | | | | | Trace elem | ents (ppm) | | | | | | La | 38.37 | 89.63 | 30.35 | 10.27 | 53.40 | 7.06 | 15.93 | 16.21 | 16.07 | | Ce | 71.86 | 125.11 | 54.86 | 22.06 | 101.56 | 12.32 | 29.46 | 29.94 | 29.70 | | Pr | 7.91 | 20.47 | 7.53 | 2.76 | 11.37 | 1.65 | 3.47 | 3.52 | 3.49 | | Nd | 30.03 | 81.19 | 28.79 | 11.17 | 43.81 | 6.73 | 13.52 | 13.69 | 13.61 | | Sm | 6.15 | 19.09 | 6.48 | 2.64 | 9.26 | 1.52 | 2.80 | 2.96 | 2.88 | | Eu | 1.14 | 3.43 | 1.55 | 0.66 | 1.98 | 0.36 | 0.68 | 0.73 | 0.70 | | Gd | 5.27 | 13.05 | 5.60 | 2.40 | 8.13 | 1.34 | 2.90 | 2.97 | 2.93 | | Tb | 0.93 | 1.96 | 1.05 | 0.40 | 1.46 | 0.22 | 0.53 | 0.54 | 0.53 | | Dy | 5.86 | 10.15 | 7.09 | 2.35 | 9.14 | 1.28 | 3.41 | 3.40 | 3.40 | | Ho | 1.23 | 1.85 | 1.58 | 0.48 | 1.91 | 0.25 | 0.73 | 0.73 | 0.73 | | Er | 3.49 | 4.99 | 4.71 | 1.32 | 5.29 | 0.66 | 2.20 | 2.16 | 2.18 | | Tm | 0.53 | 0.73 | 0.72 | 0.21 | 0.76 | 0.09 | 0.36 | 0.36 | 0.36 | | Yb | 3.45 | 4.58 | 4.76 | 1.31 | 4.68 | 0.57 | 2.37 | 2.38 | 2.38 | | Lu | 0.56 | 0.72 | 0.76 | 0.21 | 0.73 | 0.09 | 0.41 | 0.41 | 0.41 | | Ba | 577 | 698 | 1072 | 906 | 457 | 167 | 791 | 802 | 796 | | Th | 15.79 | 15.46 | 16.78 | 4.24 | 14.45 | 1.74 | 10.38 | 9.99 | 10.19 | | Nb | 12.91 | 15.27 | 14.11 | 4.50 | 16.24 | 1.23 | 19.45 | 19.73 | 19.59 | | Y | 34.76 | 51.97 | 45.03 | 14.48 | 54.52 | 7.22 | 20.93 | 21.14 | 21.04 | | Hf | 8.28 | 6.91 | 7.06 | 3.49 | 6.26 | 1.86 | 5.58 | 5.46 | 5.52 | | Ta | 1.04 | 1.15 | 1.15 | 0.33 | 1.21 | 0.12 | 1.46 | 1.44 | 1.45 | | U | 3.05 | 3.14 | 4.93 | 1.18 | 3.62 | 0.57 | 2.15 | 2.11 | 2.13 | | Pb | 2.44 | 3.10 | 16.44 | 6.15 | 11.55 | 3.35 | 2.81 | 2.84 | 2.82 | | Rb | 141.1 | 200.7 | 124.2 | 63.3 | 263.4 | 27.5 | 168.5 | 171.5 | 170.0 | | Cs | 8.95 | 12.33 | 5.33 | 4.74 | 23.14 | 1.29 | 3.05 | 3.11 | 3.08 | | Sr | 31 | 30 | 144 | 80 | 22 | 12 | 52 | 53 | 52 | | Sc | 10.4 | 18.9 | 25.5 | 3.4 | 22.1 | 0.7 | 15.7 | 16.2 | 16.0 | Table 4. XRF analyses of basaltic rocks from the St. Maries quadrangle. | Map no. Sample no. Lithology Form 30' x 60' quad. 7.5' quad. Unit Lat. Long. | 68
98K040607
basalt
flow
St. Maries
St. Maries
Ted
47.26956
-116.59677 | 69
98K073002
basalt
flow
St. Maries
Benewah Lk.
Ted
47.36242
-116.62993 | 70
98K080404
basalt
flow
St. Maries
Chatcolet
Ted
47.34542
-116.77245 | 71
98K080409
basalt
flow
St. Maries
Harrison
Ted
47.40123
-116.78249 | 72
98K033004
basalt
flow
St. Maries
Harrison
Tgn2
47.44931
-116.77684 | 73
98K033006
basalt
flow
St. Maries
Harrison
Tgn2
47.46148
-116.76701 | 74
98K073001
basalt
flow
St. Maries
Benewah Lk.
Tgn2
47.36033
-116.63459 | 75
98K080302
basalt
flow
St. Maries
Worley
Tgn2
47.48878
-116.91565 | |--|--|--|---|---|---|--|---|--| | | | | Unnormal | ized results (we | eight %) | | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ Total SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O | 51.22
15.16
1.308
10.07
0.202
10.18
6.46
0.62
3.06
0.301
98.58
51.96
15.38
1.327
10.21
0.205
10.33
6.55
0.63 | 50.87
15.44
1.295
10.25
0.196
10.34
6.61
0.68
2.94
0.300
98.92
51.42
15.61
1.309
10.36
0.198
10.45
6.68
0.69 | 51.02
15.49
1.284
10.16
0.194
10.35
6.66
0.74
2.97
0.299
99.17
Normaliz
51.45
15.62
1.295
10.24
0.196
10.44
6.72
0.75 | 50.76
15.22
1.271
10.76
0.199
10.33
6.67
0.65
2.93
0.300
99.09
ted results (weights)
51.23
15.36
1.283
10.86
0.201
10.42
6.73
0.66 | 53.71 13.93 1.907 10.91 0.199 8.45 3.89 1.28 2.78 0.410 97.47 ght %) 55.11 14.29 1.957 11.19 0.204 8.67 3.99 1.31 | 53.60
13.68
1.875
11.17
0.206
8.41
4.42
1.30
2.90
0.383
97.94
54.73
13.97
1.914
11.40
0.210
8.59
4.51
1.33 | 53.75 13.81 1.863 11.69 0.212 8.43 4.79 1.35 2.91 0.381 99.19 54.19 13.92 1.878 11.79 0.214 8.50 4.83 1.36 | 53.51
13.90
1.868
11.43
0.206
8.53
4.75
1.28
2.92
0.390
98.78
54.17
14.07
1.891
11.57
0.209
8.64
4.81
1.30 | | Na ₂ O | 3.10 | 2.97 | 3.00 | 2.96 | 2.85 | 2.96 | 2.93 | 2.96 | | P_2O_5 | 0.305 | 0.303 | 0.302 | 0.303 | 0.421 | 0.391 | 0.384 | 0.395 | | | | | Trac | e elements (pp | m) | | | | | Cr
Sc
V
Ba
Rb
Sr
Zr
Y
Nb
Ga
Cu
Zn
Pb
La | 172
35
312
301
8
366
106
28
8.1
16
79
96
2 | 191
39
318
306
7
378
106
29
7.6
18
82
94
4 | 181
44
311
290
7
378
105
28
7.5
20
79
96
1
8 | 180
42
309
287
8
378
106
27
7.4
23
82
97
2 | 44
35
277
526
29
314
164
36
14.1
22
23
119
10 | 45
36
298
505
30
307
160
36
13.0
21
24
121
40 | 49
37
289
487
30
307
158
36
11.5
22
22
122
6
25 | 50
35
290
490
29
305
158
36
11.9
22
24
116
8 | | Ce
Th | 35
4 | 33
3 | 30 2 | 28
4 | 48 2 | 47
5 | 45
5 | 54
6 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. [&]quot;†" denotes values > 120% of highest standard in lab. Table 4. XRF analyses of basaltic rocks from the St. Maries quadrangle (continued). | Map no. Sample no. Lithology Form 30' x 60' quad. 7.5' quad. Unit Lat. Long. | 76
98K080405
basalt
flow
St. Maries
Chatcolet
Tgn2
47.34896
-116.76979 | 77 98K080408 basalt flow St. Maries Harrison Tgn2 47.40282 -116.77846 | 78
98K033007
basalt
flow
St. Maries
Harrison
Tgr2
47.47366
-116.76631 | 79
98K033104
basalt
flow
St. Maries
Black Lake
Tgr2
47.48660
-116.72059 | 80
MM509
basalt
flow
St. Maries
Mission Mtn.
Ton
47.00983
-116.90369 | 81
BRETC
basalt
flow
St. Maries
Merry Cr.
Tpr
47.01210
-116.20715 | 82
JP-5
basalt
flow
St. Maries
Worley
Tpr
47.44233
-116.89682 | 83
98K033001
basalt
flow
St. Maries
Harrison
Tpr
47.44272
-116.75081 | |--|--|---|--
---|--|---|---|--| | | | | Unnormal | ized results (w | eight %) | | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ Total | 53.81
14.17
1.892
10.68
0.201
8.60
4.66
1.29
2.98
0.388
98.67 | 53.84
14.38
1.936
10.75
0.191
8.69
4.64
1.11
3.09
0.380
99.01 | 53.51
13.51
2.134
11.91
0.195
7.55
3.58
1.79
2.94
0.371
97.49
Normaliz | 53.56
13.41
2.167
12.23
0.196
7.55
3.73
1.65
3.03
0.369
97.89 | 48.00
15.92
3.569
11.83
0.184
7.42
4.79
1.77
3.99
0.786
98.26 | 48.81
13.26
3.172
13.57
0.221
9.09
5.22
1.16
2.67
0.753
97.93 | 49.48
12.66
3.680
13.99
0.250
8.51
4.43
1.24
2.83
0.780
97.85 | 50.42
12.77
3.634
13.75
0.233
8.56
4.02
1.41
2.80
0.796
98.39 | | Al ₂ O ₃
TiO ₂
FeO* | 14.36
1.918
10.82 | 14.52
1.955
10.86 | 13.86
2.189
12.22 | 13.70
2.214
12.49 | 16.20
†3.63
12.04 | 13.54
†3.24
13.86 | 12.94
†3.76
14.30 | 12.98
†3.69
13.97 | | MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ | 0.204
8.72
4.72
1.31
3.02
0.393 | 0.193
8.78
4.69
1.12
3.12
0.384 | 0.200
7.74
3.67
1.84
3.02
0.381 | 0.200
7.71
3.81
1.69
3.10
0.377 | 0.187
7.55
4.87
1.80
4.06
†0.80 | 0.226
9.28
5.33
1.18
2.73
†0.77 | 0.260
8.70
4.53
1.27
2.89
†0.79 | 0.237
8.70
4.09
1.43
2.85
†0.81 | | | | | Trac | e elements (pp | om) | | | | | Ni
Cr
Sc
V
Ba
Rb
Sr
Zr
Y
Nb
Ga
Cu
Zn | 2
49
33
284
511
30
324
162
35
12.9
24
26
122 | 3
53
34
295
532
21
326
161
37
12.3
22
22
125 | 10
27
33
407
646
42
325
169
35
14.8
21
31 | 13
30
31
413
622
43
325
168
34
13.7
22
41
125 | 3
9
19
255
466
22
528
315
35
53.5
27
5 | 33
108
39
378
433
26
284
179
46
17.3
22
31 | 2
26
34
440
631
31
282
203
49
17.3
20
11 | 6
23
36
439
561
35
293
213
51
20.3
23
15 | | Pb
La
Ce
Th | 6
14
66
7 | 7
16
48
5 | 10
11
34
7 | 31
25
33
6 | 1
33
79
5 | 3
25
59
5 | 4
37
70
6 | 4
28
47
4 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. [&]quot;†" denotes values > 120% of highest standard in lab. Table 4. XRF analyses of basaltic rocks from the St. Maries quadrangle (continued). | Map no. Sample no. Lithology Form 30' x 60' quad. 7.5' quad. Unit Lat. Long. | 84
98K033003
basalt
flow
St. Maries
Harrison
Tpr
47.44542
-116.76111 | 85
98K033010
basalt
flow
St. Maries
Harrison
Tpr
47.47644
-116.83940 | 86
98K033111
basalt
flow
St. Maries
Black Lake
Tpr
47.40192
-116.72758 | 87
98K033112
basalt
flow
St. Maries
Black Lake
Tpr
47.40082
-116.71320 | 98K033114
basalt
flow
St. Maries
Black Lake
Tpr
47.40060
-116.67388 | 89
98K040101
basalt
flow
St. Maries
St. Joe
Tpr
47.30117
-116.27396 | 90
98K040202
basalt
flow
St. Maries
Calder
Tpr
47.27888
-116.163055 | 91
98K040204
basalt
flow
St. Maries
St. Joe
Tpr
47.29435
-116.25178 | |--|--|--|---|--|---|---|---|---| | | | | Unnormal | ized results (we | eight %) | | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ Total | 48.48
12.30
3.561
14.61
0.242
8.40
4.34
1.28
2.64
0.767
96.62 | 49.36
12.63
3.621
14.51
0.239
8.52
4.21
1.28
2.64
0.768
97.78 | 49.36
12.36
3.501
14.56
0.244
8.24
4.20
1.37
2.63
0.766
97.23
Normaliz | 49.58
12.38
3.617
14.52
0.242
8.42
4.23
1.23
2.69
0.780
97.69 | 49.24
12.58
3.635
14.66
0.236
8.56
4.01
1.22
2.56
0.776
97.48
ght %) | 49.65
12.59
3.626
14.19
0.249
8.41
4.33
1.23
2.78
0.768
97.82 | 49.43
12.59
3.599
14.43
0.246
8.49
4.31
1.22
2.52
0.775
97.61 | 49.67
12.74
3.651
14.26
0.250
8.54
4.48
1.30
2.62
0.779
98.29 | | TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ | †3.69
†15.12
0.250
8.69
4.49
1.32
2.73
†0.79 | †3.70
†14.84
0.244
8.71
4.31
1.31
2.70
†0.79 | †3.60
†14.97
0.251
8.47
4.32
1.41
2.70
†0.79 | †3.70
†14.86
0.248
8.62
4.33
1.26
2.75
†0.80 | †3.73
†15.04
0.242
8.78
4.11
1.25
2.63
†0.80 | †3.71
14.51
0.255
8.60
4.43
1.26
2.84
†0.79 | †3.69
†14.78
0.252
8.70
4.42
1.25
2.58
†0.79 | †3.71
14.51
0.254
8.69
4.56
1.32
2.67
†0.79 | | Ni
Cr
Sc | 1
29
36 | 4
27
35 | 0
22
34 | 5
26
33 | 3
28
35 | 1
26
33 | 2
29
37 | 2
28
35 | | V Ba Rb Sr Zr Y Nb | 437
527
31
283
207
51
19.4 | 3445
526
31
290
209
50
18.9 | 419
543
36
283
216
49
19.8 | 443
504
33
287
211
51 | 450
506
30
291
212
51
19.1 | 453
514
31
281
203
48
18.4 | 439
496
30
288
207
49
19.5 | 447
499
33
284
202
48
19.8 | | Ga
Cu
Zn
Pb
La
Ce
Th | 19.4
23
24
150
†103
11
62
4 | 16.9
25
13
152
24
34
60
6 | 19.8
24
5
154
4
24
90
5 | 19.9
26
15
158
9
37
76 | 19.1
24
15
153
3
18
73
6 | 18.4
23
11
152
11
30
67
7 | 19.3
24
16
155
9
23
62
6 | 19.8
24
14
158
8
19
62
7 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. " \dagger " denotes values > 120% of highest standard in lab. Table 4. XRF analyses of basaltic rocks from the St. Maries quadrangle (continued). | Map no. Sample no. Lithology Form 30' x 60' quad. 7.5' quad. Unit Lat. Long. | 92
98K040205
basalt
flow
St. Maries
Calder
Tpr
47.29519
-116.24433 | 93
98K040205F
basalt
flow
St. Maries
Calder
Tpr
47.29519
-116.24433 | 94
98K040206
basalt
flow
St. Maries
St. Joe
Tpr
47.29482
-116.25214 | 95
98K040603
basalt
slump?
St. Maries
St. Maries
Tpr
47.29005
-116.55678 | 96
98K040605
basalt
slump?
St. Maries
St. Maries
Tpr
47.27715
-116.57972 | 97
98K040606
basalt
slump?
St. Maries
St. Maries
Tpr
47.27568
-116.57466 | 98
98K040613
basalt
flow
St. Maries
St. Maries
Tpr
47.27505
-116.50865 | 98
98K040613R
duplicate
Tpr
47.27505
-116.50865 | |--|--|---|--|--|--|--|---|--| | | | | Unnormal | ized results (we | eight %) | | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ Total | 48.97
12.48
3.606
14.48
0.241
8.49
4.30
1.22
2.46
0.774
97.02 |
49.01
12.48
3.610
15.53
0.235
8.51
4.26
1.15
2.62
0.778
98.18 | 50.15
12.75
3.472
14.14
0.246
8.25
4.38
1.19
2.60
0.728
97.91
Normaliz
51.22
13.02 | 48.67
12.64
3.771
14.44
0.241
8.71
4.07
1.32
2.51
0.786
97.16
ted results (weights) | 49.94
12.95
3.588
13.63
0.242
8.56
4.23
1.23
2.71
0.773
97.85
ght %) | 49.25
12.61
3.602
14.28
0.250
8.53
4.44
1.20
2.72
0.764
97.65 | 49.30
12.59
3.626
14.09
0.232
8.60
4.27
1.12
2.64
0.761
97.23 | 49.33
12.58
3.625
14.16
0.232
8.57
4.23
1.11
2.68
0.762
97.28 | | TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ | †3.72
†14.92
0.248
8.75
4.43
1.26
2.54
†0.80 | †3.68
†15.82
0.239
8.67
4.34
1.17
2.67
†0.79 | †3.55
14.44
0.251
8.43
4.47
1.22
2.66
†0.74 | †3.88
†14.86
0.248
8.96
4.19
1.36
2.58
†0.81 | †3.67
13.93
0.247
8.75
4.32
1.26
2.77
†0.79 | †3.69
14.62
0.256
8.74
4.55
1.23
2.79
†0.78 | †3.73
14.49
0.239
8.85
4.39
1.15
2.72
†0.78 | †3.73
14.56
0.238
8.81
4.35
1.14
2.75
†0.78 | | Ni
Cr
Sc
V
Ba
Rb
Sr
Zr
Y
Nb
Ga
Cu
Zn
Pb
La
Ce
Th | 3
25
36
447
490
33
290
208
50
20.4
25
28
155
5
33
69
7 | 0
36
35
443
500
28
296
212
51
18.9
24
13
150
5 | 6
32
32
431
504
34
276
205
47
19.3
24
21
149
8
26
61
7 | 3
29
38
†456
521
30
292
212
52
19.3
25
10
153
4
25
79
6 | 7
23
36
453
544
31
293
206
48
19.4
23
11
155
8
26
68
8 | 5
32
39
441
533
28
282
204
49
18.5
22
12
150
3
21
60
9 | 5
37
37
†457
515
25
283
204
48
18.4
22
17
160
2
19
71
8 | 6
32
33
447
511
24
281
204
49
19.6
23
13
152
5
16
71
8 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. " \dagger " denotes values > 120% of highest standard in lab. Table 4. XRF analyses of basaltic rocks from the St. Maries quadrangle (continued). | Map no. Sample no. Lithology Form 30' x 60' quad. 7.5' quad. Unit Lat. Long. | 98K040613AV
average | 99
98K073003
basalt
flow
St. Maries
Benewah Lk.
Tpr
47.36431
-116.62734 | 100
98K080301
basalt
flow
St. Maries
Worley
Tpr
47.49403
-116.93060 | 101
98K080401
basalt
flow
St. Maries
Chatcolet
Tpr
47.34281
-116.79260 | 102
98K080402
basalt
flow
St. Maries
Chatcolet
Tpr
47.34278
-116.77839 | 103
98K080407
basalt
slump?
St. Maries
Harrison
Tpr
47.40405
-116.77364 | 104
98K080410
basalt
flow
St. Maries
Harrison
Tpr
47.39500
-116.78194 | 105
98K080504
basalt
flow
St. Maries
Calder
Tpr
47.291309
-116.236891 | |---|---|--|--|--|---|--|---|--| | | | | Unnormal | ized results (we | eight %) | | | | | SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO MgO K ₂ O Na ₂ O P ₂ O ₅ Total SiO ₂ Al ₂ O ₃ TiO ₂ FeO* MnO CaO | 49.32
12.59
3.626
14.13
0.232
8.59
4.25
1.12
2.66
0.762
97.25
50.71
12.94
3.73
14.52
0.239
8.83 | 49.91
12.92
3.707
13.69
0.228
8.77
4.32
1.29
2.59
0.770
98.20
50.83
13.16
†3.78
13.94
0.232
8.93 | 49.84 12.79 3.707 14.07 0.236 8.60 4.34 1.42 2.66 0.803 98.46 Normaliz 50.62 12.99 †3.76 14.29 0.240 8.73 | 49.67 12.68 3.670 14.15 0.254 8.50 4.58 1.29 2.73 0.789 98.32 sed results (weinstance) 50.52 12.90 †3.73 14.39 0.258 8.65 | 49.64
12.67
3.576
15.01
0.248
8.41
4.71
1.19
2.76
0.735
98.95
ght %)
50.17
12.80
†3.61
†15.17
0.251
8.50 | 49.64
12.77
3.676
14.26
0.242
8.56
4.58
1.36
2.68
0.772
98.54
50.38
12.96
†3.73
14.47
0.246
8.69 | 49.65
12.61
3.563
15.20
0.235
8.31
4.46
1.22
2.79
0.755
98.79
50.26
12.76
†3.61
†15.39
0.238
8.41 | 50.27
12.80
3.681
13.84
0.215
8.67
4.12
1.30
2.66
0.791
98.35
51.11
13.01
†3.74
14.08
0.219
8.82 | | MgO | 4.37 | 4.40 | 4.41 | 4.66 | 4.76 | 4.65 | 4.51 | 4.19 | | K,O | 1.15 | 1.31 | 1.44 | 1.31 | 1.20 | 1.38 | 1.23 | 1.32 | | Na ₂ O | 2.74 | 2.64 | 2.70 | 2.78 | 2.79 | 2.72 | 2.82 | 2.70 | | P ₂ O ₅ | 0.78 | †0.78 | †0.82 | †0.80 | †0.74 | †0.78 | †0.76 | †0.80 | | | | | Trac | e elements (pp | m) | | | | | Ni | 6 | 5 | 3 | 4 | 4 | 4 | 0 | 8 | | Cr | 35 | 41 | 34 | 32 | 37 | 31 | 42 | 32 | | Sc | 35 | 35 | 34 | 42 | 38 | 39 | 30 | 36 | | V | 452 | 454 | †457 | †455 | 437 | 452 | 425 | 449 | | Ba | 513 | 491 | 529 | 520 | 481 | 498 | 492 | 511 | | Rb | 25 | 26 | 32 | 30 | 27 | 30 | 30 | 32 | | Sr | 282 | 291 | 288 | 280 | 277 | 287 | 279 | 300 | | Zr | 204 | 206 | 213 | 208 | 199 | 206 | 206 | 212 | | Y | 49 | 50 | 51 | 48 | 47 | 50 | 50 | 50 | | Nb | 19 | 17.5 | 19.3 | 19.0 | 17.4 | 18.5 | 17.9 | 17.6 | | Ga | 23 | 24 | 24 | 22 | 24 | 25 | 22 | 26 | | Cu | 15 | 13 | 11 | 16 | 15 | 17 | 16 | 11 | | Zn | 156 | 165 | 157 | 148 | 150 | 154 | 150 | 161 | | Pb | 4 | 5 | 5 | 5 | 4 | 5 | 2 | 5 | | La | 18 | 23 | 24 | 38 | 18 | 29 | 31 | 30 | | Ce | 71 | 71 | 68 | 70 | 59 | 67 | 54 | 61 | | Th | 8 | 8 | 8 | 5 | 8 | 7 | 8 | 6 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. "R" at end of sample number denotes a duplicate bead made from the same rock powder. " \dagger " denotes values > 120% of highest standard in lab. Table 4. XRF analyses of basaltic rocks from the St. Maries quadrangle (continued). | Map no. | 106 | 107 | |-----------------|------------|------------| | Sample no. | STJ1C | 98K033103 | | Lithology | basalt | basalt | | Form | flow | flow | | 30' x 60' quad. | St. Maries | St. Maries | | 7.5' quad. | St. Joe | Black Lake | | Unit | Tpr | Tpr? | | Lat. | 47.29435 | 47.48597 | | Long. | -116.25178 | -116.70872 | ### Unnormalized results (weight %) | 40.42 | 47.96 | |-------|--| | 49.42 | 47.90 | | 12.57 | 10.22 | | 3.623 | 3.874 | | 15.26 | 16.57 | | 0.246 | 0.276 | | 8.48 | 8.13 | | 4.55 | 6.15 | | 1.30 | 1.19 | | 2.64 | 2.22 | | 0.761 | 0.734 | | 98.85 | 97.32 | | | 3.623
15.26
0.246
8.48
4.55
1.30
2.64
0.761 | ### Normalized results (weight %) | SiO, | 50.00 | 49.28 | |-------------------------------|--------|--------| | Al_2O_3 | 12.72 | 10.50 | | Ai_2O_3
TiO ₃ | †3.67 | †3.98 | | FeO* | †15.43 | †17.03 | | MnO | 0.249 | †0.28 | | CaO | 8.58 | 8.35 | | | | | | MgO | 4.60 | 6.32 | | K ₂ O | 1.32 | 1.22 | | Na ₂ O | 2.67 | 2.28 | | P_2O_5 | †0.77 | †0.75 | ### Trace elements (ppm) | 5 | 16 | |------|---| | 35 | 45 | | 36 | 37 | | †456 | †473 | | 484 | 471 | | 33 | 29 | | 286 | 231 | | 204 | 199 | | 49 | 48 | | 18.2 | 19.4 | | 20 | 19 | | 11 | 15 | | 154 | 166 | | 7 | 5 | | 24 | 22 | | 44 | 78 | | 8 | 5 | | | 35
36
†456
484
33
286
204
49
18.2
20
11
154
7
24 | Major elements normalized on a volatile-free basis; FeO* is total Fe expressed as FeO. [&]quot;R" at end of sample number denotes a duplicate bead made from the same rock powder. [&]quot;†" denotes values > 120% of highest standard in lab.