History of Selected Mines in the Custer Area, Custer County, Idaho

Victoria E. Mitchell

Idaho Geological Survey
Morrill Hall, Third Floor
University of Idaho
Moscow, Idaho 83844-3014

Staff Report 99-7
August 1999
History of Selected Mines in the Custer Area, Custer County, Idaho

Victoria E. Mitchell

Staff reports present timely information for public distribution. This publication may not conform to the agency’s standards.

Staff Report 99-7
August 1999

Idaho Geological Survey
Morrill Hall, Third Floor
University of Idaho
Moscow, Idaho 83844-3014
CONTENTS

Introductory Note ... v
Introduction ... 1
General Custer Mine ... 6
Lucky Boy Mine ... 10
Fourth of July Mine ... 22
References ... 25

ILLUSTRATIONS

Figure 1. Location map of the Custer area and vicinity, Custer County, Idaho (U.S. Forest Service Challis National Forest map, scale ¾ inch = 1 mile). ... 2

Figure 2. Topographic map of the Custer area (U. S. Geological Survey Custer and Sunbeam 7.5-minute topographic maps). 3

Figure 3. Geologic map of the Custer area showing distribution of veins and lodes (Anderson, 1949, Figure 3). 4

Figure 4. Claim map of the Custer area (Anderson, 1949, Figure 4). 5

Figure 5. General Custer mill (Wells, 1983, p. 96). ... 7

Figure 6. General Custer mill with the town of Custer in the background, c. 1900 (Wells, 1983, p. 96). ... 8

Figure 7. Map of workings on the General Custer vein that were accessible in 1947 (Anderson, 1949, Figure 5). 11

Figure 8. Cross section through the Lucky Boy Mine along line A-B, showing attitude of veins (Anderson, 1949, Figure 9). 15
Figure 9. Plan map of the Lucky Boy Mine with geology shown on the 400 and 600 levels (Anderson, 1949, Figure 6). ... 16

Figure 10. Longitudinal section along the Lucky Boy vein showing stopes (Anderson, 1949, Figure 7). .. 17

Figure 11. Longitudinal section along the Calcite vein at the Lucky Boy Mine showing stopes (Anderson, 1949, Figure 8). .. 18

Figure 13. Lucky Boy Mine (c. 1949; Idaho Historical Society photograph). 20

Figure 14. Lucky Boy Mine, 1983 (photograph by Earl Bennett, Idaho Geological Survey). ... 21

Figure 15. Buildings at the Lucky Boy Mine, 1994 (photograph by Falma J. Moye, Idaho Geological Survey). .. 23

Figure 16. Geologic map of two adits on the Fourth of July veins (Anderson, 1949, Figure 11). ... 24

TABLES

Table 1. Total recorded production for mines in the Custer area. 6

Table 2. Companies operating at the Lucky Boy Mine 13
INTRODUCTORY NOTE

This report was prepared under a cooperative agreement with the U.S. Forest Service, Region IV, as part of a project to identify and describe inactive and abandoned mines in the state of Idaho. Work on this project included preparing detailed histories of mines in Region IV that had significant recorded production. The information in this report is taken from published and unpublished sources in the Idaho Geological Survey's mineral production files. Unless otherwise noted, most mine production data are drawn from the U.S. Geological Survey's (USGS) annual volumes on Mineral Resources of the United States (1882-1923) and the equivalent volumes produced by the U.S. Bureau of Mines (USBM) (Mineral Resources of the United States, 1924-1931, and Minerals Yearbook, 1932 to the present). Information on underground workings and mine equipment is generally from the annual reports of the Idaho Inspector of Mines (IMIR), published from 1899 to 1979. After 1974, the Mine Inspector's office was known as the Mine Safety Bureau, a section of the Idaho Department of Labor and Industrial Services. Detailed accounts of mine operations are mostly drawn from the annual reports prepared by the companies for the State Inspector of Mines; these reports were required by law, and the information contained in them formed the basis of the Mine Inspector's annual reports. Reports of recent developments are taken from the Idaho Geological Survey's (IGS) annual reports on mining and minerals in Idaho (from 1984 to present) or from similar reports produced by the Survey's predecessor, the Idaho Bureau of Mines and Geology (IBMG) from 1975 to 1984. Other published sources are referenced in the text. A complete bibliography is included at the end of the report. Where direct quotations are taken from source materials, the original spelling and grammar are preserved.
History of Selected Mines in the Custer Area, Custer County, Idaho

Victoria E. Mitchell

INTRODUCTION

The mines in the Custer area (Figure 1) that had the largest recorded production are the General Custer, the Lucky Boy, and the Fourth of July. The mines are located southeast of Custer along the ridge leading to the head of Fourth of July Creek (Figure 2). The deposits are epithermal silver-gold veins hosted in andesite, dacite, and rhyodacite lava flows of the Challis Volcanics which are intruded by a granodiorite/quartz monzonite pluton (Figure 3; Broili, 1974; Benson, 1984). Claims, mostly patented, cover the entire mineralized zone (Figure 4). The deposits are mainly breccia veins and lodes which are filled with quartz and calcite. The ore occurred in high-grade shoots separated by areas of much lower grade material, and grade decreased with depth. Ore minerals included gold, pyrite, electrum, chalcopyrite, tetrahedrite, sphalerite, and galena (Anderson, 1949). Total recorded production from the Lucky Boy and Fourth of July Mines is 51,311 tons of ore and 12,197 tons of reprocessed tailings. This material yielded 18,752 ounces of gold, 306,599 ounces of silver, 643 pounds of copper, and 241 pounds of lead (Table 1). No data are available for the production from the General Custer Mine.

1Idaho Geological Survey, Main Office at Moscow, University of Idaho, Moscow.
Figure 1. Location map of the Custer area and vicinity, Custer County, Idaho (U.S. Forest Service Challis National Forest map, scale 1/2 inch = 1 mile).
Figure 2. Topographic map of the Custer area (U.S. Geological Survey Custer and Sunbeam 7.5-minute topographic maps).
Figure 3. Geologic map of the Custer area showing distribution of veins and lodes (Anderson, 1949, Figure 3).
Table 1. Total recorded production for mines in the Custer area.

<table>
<thead>
<tr>
<th>Mine</th>
<th>Ore (tons)</th>
<th>Old Tailings (tons)</th>
<th>Gold (ounces)</th>
<th>Silver (ounces)</th>
<th>Copper (pounds)</th>
<th>Lead (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucky Boy Mine (1902-1955)</td>
<td>50,249</td>
<td>12,196</td>
<td>17,522.91</td>
<td>302,135</td>
<td>82</td>
<td>181</td>
</tr>
<tr>
<td>Fourth of July Mine (1932-1947)</td>
<td>1,062</td>
<td>1</td>
<td>1,228.97</td>
<td>4,464</td>
<td>561</td>
<td>60</td>
</tr>
<tr>
<td>TOTAL</td>
<td>51,311</td>
<td>12,197</td>
<td>18,751.88</td>
<td>306,599</td>
<td>643</td>
<td>241</td>
</tr>
</tbody>
</table>

GENERAL CUSTER MINE

The General Custer was discovered on August 17, 1876, and was worked actively until 1905. The principal claims in the group are the General Custer, the Unknown, and the White Bird, which were considered separate mines in the early days (Figures 2, 3, and 4). Umpleby (1913) stated that the mine produced $8 million during that period. Most of the ore was mined from the surface; erosion had removed the hanging wall from the vein, exposing about 500 feet of ore. Early shipments of hand-picked ore were said to have averaged $600 per ton (Umpleby, 1913). A mill was built at Custer in 1881 and was equipped with thirty stamps, several Wilfley tables, a roaster, and cyanide tanks (Figures 5 and 6). An aerial tram carried the ore from the mine to the mill. Early mill runs averaged $150 to $300 per ton (Anderson, 1949) but dropped to $30 or less before the mine was closed.

Strahorn (1881, p. 45-46) described the General Custer as follows:

In the Mt. Custer belt the General Custer is the most prominent of the many ledges that show large and rich bodies of ore. It is not only the great mineral wealth of the district but of the entire coast, inasmuch as nothing that will bear any comparison to it has yet been found. It is the only instance on record where a ledge so immense in wealth and size was already opened and developed when the eyes of the prospector first looked upon it. Ore bodies are usually found beneath the surface, and miners consider themselves very fortunate, if after long searching by shafts and tunnels, they strike a vein that insures them reasonable dividends over and above cost of development. The Custer required no outlay of money to make it a paying mine. Its face was good for millions. Nature, in one of her philanthropic moods, did the prospecting and development. The outer wall of this great treasure-valet, through wear and tear of ages, crumbled and slipped from the ore-body for a distance of several hundred feet, leaving many thousands of tons of the very choicest rock lying against the mountain side to be broken down at little expense.

6
Figure 5. General Custer mill (Wells, 1983, p. 96).
Figure 6. General Custer mill with the town of Custer in the background (c. 1900; Wells, 1983, p. 96).
The Custer, where it shows above ground, is sixty to 100 feet or more in width, and is known to be all of 600 feet in length. The discoverers in the seasons of '77 and '78 shipped $60,000 worth of ore from an open cut 30x40 feet, most of which sampled $500 per ton. One lot shipped to San Francisco gave over $900 per ton. The best of the ore mills from $700 to $1,000 per ton. Although recognized as a silver mine, the Custer bullion contains fifteen to twenty per cent gold. The mining engineers who came to examine the property soon after its discovery, reported $2,500,000 to $3,000,000 in sight. In July of 1879 the mine changed hands, the original owners transferring their different interests to Messrs. Hagan & Tevis, of San Francisco, Geo. W. Grayson, of Oakland, and Pfeiffer Bros., of Bonanza. The price aggregated about $160,000. In the summer of 1880 the machinery for a twenty-stamp mill was purchased of Fraser & Chalmers, Chicago, and shipped in. By the first day of January, 1881, the mill was completed and ready to commence the manufacture of bullion. Owing to various hindrances, only ten stamps were in operation until early spring, since which time they have all been doing regular duty. The mill is a model for the reduction of silver ores, and has all the improved appliances for that purpose. It cost $130,000, and paid for itself in a few weeks after getting down to steady work. It is claimed by professional mill men and miners, that the Custer company’s mill has produced more bullion for the time it has been in operation, than any one of similar capacity within the history of modern mining, except the Elmore mill, of Silver City, Idaho. By the first of July, 200 bars or bricks had been cast, the total value of which approximated one-half million dollars, and this while running principally on second-class or $130 to $180 ore. The mine is situated 2,000 feet above the mill, and connected therewith by tramway. The ore repository at the mill has a capacity of 1,000 tons; but an additional ore house, with a capacity of 6,000 tons, is to be erected this fall.

Up to the date of closing our reports (September 1), the Custer company will have produced 240 bars of bullion, valued at $650,000.

The Unknown mine lies directly east of and is a continuation of the Custer vein, but is not of so great dimensions as the latter. The property is held principally by the owners of its neighbor, the Custer. Nearly $100,000 worth of ore was shipped during the seasons of 1877-8, the average yield per ton being about $450. Work has been carried forward vigorously on the Unknown for some months past, and the dump contains from 800 to 1,000 tons of ore that averages nearly $200 per ton. It is estimated that the ore in sight in the mine is worth $1,000,000.

On the summit of Mt. Custer, and directly above the Gen. Custer, is the Summit mine, another large and rich ledge. The ore works $230 per ton by arrestra. The vein is opened to a depth of 150 feet by tunnel and by shafts at different points which developments give it an established reputation of wealth and permanency.

Development of the Custer was delayed for two years by complicated litigation involving the three original owners plus the subsequent purchasers (Luebbert, 1978). Eventually, the lawsuit was settled. By the spring of 1879, Joseph Pfeiffer of Rocky Bar had brought in outside capital, and production at the Custer resumed. The ore shipments were enough to pay back Pfeiffer’s initial investment ($60,000); the other investors supplied the balance of the money needed to clear the title to the mine (Wells, 1983). In 1879, the owners formed the Custer Mining Company (Luebbert, 1978). George Hearst, one of the mine’s backers, induced George Toponce to build a toll road to Challis. Stage service from Challis to Bonanza began on October 3, 1879.
The road also made it possible to bring a stamp mill to the property. Once it was operating, production from the Custer rose sharply and the mine ran steadily for over a decade (Wells, 1983). The mill processed 900 tons of ore a month and produced close to $1 million in metals in its first year (Luebbert, 1978). However, about 80 percent of the ore was in the exposed part of the vein, and the richest part had been removed by 1886 (Wells, 1983).

In 1887, the property was purchased by the owners of the Charles Dickens (a British concern) so that the mill could be used to process the ore from the Dickens (Wells, 1983). The General Custer Mine was closed in 1888 after producing between $5 million and $8 million of ore (Luebbert, 1978). Accompanied by rumors of stock manipulation by company officials, the Dickens-Custer Company, Ltd., accumulated an operating loss of £37,000 over the next four years. The Dickens-Custer Co. terminated its operation in October 1892. In 1895, the operators of the nearby Lucky Boy Mine began using the Custer mill to process their ore (Wells, 1983).

By 1906, the General Custer was controlled by the same company as the Lucky Boy. In 1938, the tailings dump was leased to William Martin of Nevada.

When Anderson visited the area in 1947, he found several tunnels had been driven into the gulch below the exposed part of the vein. Two of these were partly open and were mapped by Anderson at the time (Figure 7). The tunnels on the Unknown were completely inaccessible. The Summit had been opened to a depth of 150 feet by tunnel and shafts, but only the open cuts and the tops of the caved stopes were accessible. A 270-foot crosscut on the White Bird claim, driven from the south side of the ridge, was also open.

No further work has been reported on the General Custer since Anderson's visit. The mine is currently owned by Lucky Custer Gold, Inc.

LUCKY BOY MINE

The Lucky Boy was discovered in 1877 (Luebbert, 1978; Figures 2, 3, and 4). There are four main veins on the property—the Lucky Boy, the A, the Calcite (or Turkey Foot), and the McGuire. The Lucky Boy vein strikes N. 70° W. and dips 70° NE. The other three veins are offshoots of the Lucky Boy vein and have a more easterly bearing and a steeper dip. The bulk of the early production came from the Lucky Boy, and the Calcite vein produced much of the ore that was mined in the 1940s. The Lucky Boy vein averaged 5 feet in width, but in places narrowed to a stringer or widened to 18 feet. Widths of the other veins were 2 to 6 feet for the A, between 3 and 4 feet for the Calcite, and up to a foot for the McGuire (Anderson, 1949).

By 1881, the Lucky Boy vein had been opened at various points along a 3,000-foot length, and the ore was running $50 to $100 per ton (Strahorn, 1881). The
Figure 7. Map of workings on the General Custer vein that were accessible in 1947 (Anderson, 1949, Figure 5).
mine was not extensively worked until the late 1890s (Anderson, 1949). In 1895, the mine was acquired by the Lucky Boy Gold Mining Company, which began active mining at the Lucky Boy and used the General Custer mill to process the ore (Figures 5 and 6). To increase recovery, a wet crushing plant was installed in 1897, and a cyanide plant for reworking old tailings was added in 1899. Also in 1899, an aerial tram was installed to carry the ore from the mine to the mill. Reduced milling costs (decreased from $25 to $2 a ton) allowed lower grade ores to be processed (Wells, 1983). A new tramway from the mine to the mill was installed in November 1899, and five stamps were added to the mill in 1900, increasing its capacity to twenty-five (Luebbert, 1978). The Lucky Boy was actively mined until 1904; the mine closed when the cost of hoisting the ore up the steep inclined shaft exceeded the profits from the operation.

In 1901, the Lucky Boy Gold Mining Co. worked its thirty-stamp mill "day and night" to process ore from the mine (IMIR, p. 25). (See Table 2 for companies operating at the Lucky Boy.) The company extended its shaft 200 feet downward during 1902 and found "remarkable bodies of good ore" (IMIR, p. 14). In 1903, the ore found between the eighth and ninth levels showed a noticeable increase in metal values, particularly in gold. The Mine Inspector proposed that a tunnel driven from the Lucky Boy mill through Custer Mountain would intersect downward extensions of almost all of the major veins in the mountain.

The 1904 IMIR (p. 55) contained the following information:

At Custer, the Lucky Boy Mine was closed down in the early part of the season, owing to the necessity for further extensive development and equipment to get the best results out of its ore. This suspension caused a serious drop in the gold and silver yield of the county for 1904. The mine is reported to have extensive reserves of pay ore, but the constantly increasing costs of hoisting and pumping, as the work was carried down through a steeply inclined shaft located on top of a high mountain, consumed all the profits. A splendid advantage is afforded for a deep cross-cut drain tunnel on this property, and it is to be sincerely hoped that capital will be found with which to resume operations on this line of development.

According to Anderson (1949), the Lucky Boy produced $1,750,000 during this period.

The 1905 IMIR (p. 47) described the Lucky Boy ores as "good grade gold-silver siliceous milling ores" which were "very economically treated by amalgamation, concentration and cyaniding". The Mine Inspector also mentioned that negotiations were "pending" for driving the cross-cut tunnel. Nothing ever came of this idea.

In 1936, William A. Dunn leased the properties owned by the McCormick Estate, which included patented claims covering the Lucky Boy and the Custer. The mines were subleased to J. Arthur Thompson of Tacoma, Washington, who had six
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Officer</th>
<th>Date Incorporated</th>
<th>Charter Forfeited</th>
<th>Year(s) at Mine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucky Boy Gold Mining Co.</td>
<td>1</td>
<td>before 1895</td>
<td>1</td>
<td>1895-1904</td>
</tr>
<tr>
<td>Golden Sunbeam Mining Co.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>c. 1906 to before 1918</td>
</tr>
<tr>
<td>Custer Consolidated Mines, Inc.</td>
<td>A.H. Burroughs, President</td>
<td>Nov. 27, 1939</td>
<td>Nov. 30, 1945</td>
<td>1936-1944</td>
</tr>
<tr>
<td>Victory Mines, Inc.</td>
<td>Rex Butler, President</td>
<td>Nov. 2, 1953</td>
<td>1</td>
<td>1954-?¹</td>
</tr>
<tr>
<td>Lucky Custer Mining Corp.</td>
<td>Peter Scherer</td>
<td>Nov. 14, 1952</td>
<td>168(?)</td>
<td>1953-1968(?)</td>
</tr>
<tr>
<td>Lucky Custer Gold, Inc.</td>
<td>E.D. Moon, President</td>
<td>name changed from Tungsten Minerals on June 23, 1980</td>
<td>still active — 1994</td>
<td>1980-present</td>
</tr>
<tr>
<td>Occidental Petroleum</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1980</td>
</tr>
<tr>
<td>Excel Minerals</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1981-</td>
</tr>
<tr>
<td>U.S. Antimony Corp.</td>
<td>John C. Lawrence, President</td>
<td>August 27, 1968</td>
<td>still active — 1994</td>
<td>1987-</td>
</tr>
</tbody>
</table>

¹Information not available in IGS’s files.

In 1940, A.H. Burroughs, Jr., purchased the property. Burroughs’ Custer Consolidated Mines, Inc., moved equipment to the property, and several thousand
tons of gold ore and old tailings from the Lucky Boy was treated by amalgamation and concentration. The company employed 30 men. The mine produced about 16,000 tons of gold ore in 1941.

In 1942, the Lucky Boy produced 3,224 tons of ore before being shut down May 1 by War Production Board Order L-208, which closed all "nonessential" (gold) mines for the duration of World War II. Custer Consolidated Mines, Inc., removed all equipment from the property and abandoned the mine. The company report to the Idaho Mines Inspector for 1942 stated that development totaled 10,575 lineal feet, with 9,415 feet of tunnels, cross-cuts, and drifts, and 1,160 feet of vertical or inclined shafts. There were five tunnels, two shafts, two raises, four cross-cuts, and two drifts. The tunnels measured as follows: No. 1, 45 feet; No. 2, 170 feet; No. 3, 230 feet; No. 4, 525 feet; and No. 6, 1,075 feet. An intermediate level between the No. 4 and No. 6 tunnels was 670 feet long. The principal inclined shaft descended a vertical distance of 607 feet. The mine had a single-drum 25-horsepower hoist and a 770-cubic-foot Gardner-Denver Class H.A. compressor, and used diesel power. An average of 35 men were employed. The mill, built in 1939 or 1940, had a capacity of 65 tons per day (tpd) and used a combination of amalgamation, gravity concentration, and flotation. Seven men were employed in the mill.

When Anderson visited the mine in 1947, only the 400 level (No. 4 tunnel) was open and only the 400 and 600 levels were accessible. One of the shafts was caved to the 600 level. All levels below the 600 were flooded, and everything above the 400 was blocked by cave-ins. Anderson’s mine maps also show three lower levels not mentioned in the company’s report (Figures 8, 9, 10, and 11). According to him, the ore grades were lower on the lowest levels of the mine.

Yankee Mines, Inc., was organized in November 1947 and took over the Lucky Boy with the expectation of operating it on a fairly large scale (Anderson, 1949). In 1948, the company installed a 100-tpd flotation plant and a ball mill. Gold was recovered from the Lucky Boy dump by amalgamation. The mine produced at least some ore every year between 1949 and 1955 (Figures 12 and 13).

Yankee Mines was taken over by Victory Mines, Inc., in 1954 as the result of a stock exchange. At that time, the Lucky Boy and most of the adjacent mines were under lease to Lucky Custer Mines Corporation. The Lucky Boy was the main producer in the district in 1953. In 1954, the company recovered gold and silver by amalgamation in its plant and also shipped ore to a smelter in Midvale, Utah.

In 1961, E.D. Moon (now the president of Lucky Custer Gold, Inc.) became interested in the Lucky Boy and General Custer properties. In 1973, Moon (with the help of several investors) purchased the lease-option to the property. Late in the year, the group merged interests with Tungsten Minerals, Inc., and took over management of the company. Tungsten Minerals conducted exploration work on the property from 1975 to 1979. In 1980, the Tungsten Minerals shareholders voted to change the company’s name to Lucky Custer Gold, Inc.
Figure 8. Cross section through the Lucky Boy Mine along line A-B (Figure 9), showing attitude of veins (Anderson, 1949, Figure 9).
Figure 9. Plan map of the Lucky Boy Mine with geology shown on the 400 and 600 levels (Anderson, 1949, Figure 6).
Figure 10. Longitudinal section along the Lucky Boy vein showing stopes (Anderson, 1949, Figure 7).
Figure 11. Longitudinal section along the Calcite vein at the Lucky Boy Mine showing stopes (Anderson, 1949, Figure 8).
Figure 12. Yankee Mines, Inc., assay house and mill building. The high-grade ore bin and the No. 4 level of the mine are in the background (McDowell, 1948, 49th Annual Report of the Mining Industry of Idaho for 1947, p. 153).
Figure 13. Lucky Boy Mine (c.1949; Idaho Historical Society photograph).
Figure 14. Lucky Boy Mine, 1983 (photograph by Earl Bennett, Idaho Geological Survey.)
The property was leased to Occidental Petroleum in 1980. Occidental did 4,035 feet of vertical rotary exploration drilling (fourteen holes) before dropping the lease. Excel Minerals leased the property in 1981 (Figure 14). Between 1981 and 1985, Excel drilled 41 rotary holes (totaling 4,186 feet), 73 reverse circulation holes (totaling 13,438 feet), and 53 core holes (totaling 6,563 feet). This work delineated a mineralized zone up to 600 feet wide and 1,200 feet long along the strike of the General Custer claim, with reserves of 1,210,328 tons of ore averaging 0.063 ounce per ton (oz/ton) of gold and 0.403 oz/ton of silver.

Open pit mining began in December 1985, and milling of the ore began in June 1986. U.S. Antimony Corp. (who subleased the mine from Excel Minerals in 1987) trucked the ore from the Custer open-pit to its mill at Preacher’s Cove.

The mines in the Custer area were examined by an Idaho Geological Survey geologist in 1994 as part of an evaluation of abandoned and inactive mines in southern Idaho. Figure 15 shows the Lucky Boy camp at that time.

Production for the Lucky Boy between 1902 and 1955 was 50,249 tons of ore and 12,196 tons of reprocessed old tailings. This yielded 17,523 ounces of gold, 302,135 ounces of silver, 82 pounds of copper, and 181 pounds of lead. Records for pre-1902 and post-1955 production are not available.

FOURTH OF JULY MINE

The Fourth of July Mine is located across the high ridge between Adair and Fourth of July Creeks, a short distance southeast of the Lucky Boy (Figures 2, 3, and 4). U.S. Bureau of Mines records list most of the production for this mine under the name "Peak." The property was worked in the early days of the Yankee Fork district (Anderson, 1949), but no information is available about its early history. The mine was active in the 1930s and 1940s, making small shipments of rich ore. Some placer production was also recorded. In 1942 the Fourth of July produced 20 tons of high-grade gold ore, with some lots averaging 9 ounces of gold to the ton. The following year, the mine produced 17 tons of high-grade gold ore. Lessees shipped 21 tons of high-grade gold ore to a smelter in 1944, and ore was also produced in 1945 and 1950.

Anderson (1949) stated that the development consisted of seven adits, two on the west side (Adair Creek) of the ridge and five on the east side (Fourth of July Creek). The workings on each side of the ridge were on a different vein. The lowest tunnel on the Fourth of July Creek side was caved, but the others were open in 1947. Going from bottom to top, these tunnels were 270 feet, 98 feet, 75 feet, and 30 feet long. On the west side of the ridge, the upper adit was caved and the lower adit had 115 feet of open workings (Figure 16).
Figure 15. Buildings at the Lucky Boy Mine, 1994 (photograph by Falma J. Moye, Idaho Geological Survey).
Figure 16. Geologic map of two adits on the Fourth of July veins. Ore is shown by dotted lines; heavy lines are faults (Anderson, 1949, Figure 11).
McHugh and others (1991) noted that the Fourth of July had been consolidated with six other properties in the immediate area. Pangea Mining Co. filed a plan of operation and intended to begin underground development and testing. Production for the Fourth of July between 1932 and 1947 was 1,062 tons of ore and 1 ton of old tailings, which yielded 1,224 ounces of gold, 4,450 ounces of silver, 561 pounds of copper, and 60 pounds of lead. Placer production between 1935 and 1940 was 5.06 ounces of gold and 14 ounces of silver from a minimum of 150 yards of gravel.

REFERENCES

Idaho Geological Survey’s Mineral Property Files (includes copies of company reports to the Idaho Inspector of Mines).

